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UNIT – I 
 
 

1. WHAT IS AN ALGORITHM: 

 
Informal Definition: 

An Algorithm is any well-defined computational procedure that takes some value 

or set of values as Input and produces a set of values or some value as output. Thus 

algorithm is a sequence of computational steps that transforms the i/p into the o/p. 

 

Formal Definition: 

An Algorithm is a finite set of instructions that, if followed, accomplishes a 

particular task. In addition, all algorithms should satisfy the following criteria. 

 

INPUT Zero or more quantities are externally supplied. 

OUTPUT At least one quantity is produced. 

DEFINITENESS Each instruction is clear and unambiguous. 

FINITENESS If we trace out the instructions of an algorithm, then for all cases, the 

algorithm terminates after a finite number of steps. 

EFFECTIVENESS Every instruction must very basic so that it can be carried out, 

in principle, by a person using only pencil & paper. 

 

Issues or study of Algorithm: 

 
1. How to device or design an algorithm creating and algorithm. 

2. How to express an algorithm definiteness. 

3. How to analysis an algorithm time and space complexity. 

4. How to validate an algorithm fitness. 

5. Testing the algorithm checking for error. 

 
 ALGORITHM SPECIFICATION: 

 
Algorithm can be described in three ways. 

 
1. Natural language like English: 

When this way is chooses care should be taken, we should ensure that each 

& every statement is definite. 

 

2. Graphic representation called flowchart: 

This method will work well when the algorithm is small& simple. 
 

1. Pseudo-code Method: 

In this method, we should typically describe 

algorithms as program, which resembles language like Pascal & algol. 

 
 Pseudo-Code Conventions: 
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1. Comments begin with // and continue until the end of line. 
 

2. Blocks are indicated with matching braces {and}. 

 
3. An identifier begins with a letter. The data types of variables are not 

explicitly declared. 

 

4. Compound data types can be formed with records. Here is an example, 

Node. Record 

{ 

data type – 1 data-1; 

. 

. 

. 

data type – n data – n; 

node * link; 

} 
 

Here link is a pointer to the record type node. Individual data items of a 

record can be accessed with and period. 

 

5. Assignment of values to variables is done using the assignment statement. 

 
<Variable>:= <expression>; 

 
6. There are two Boolean values TRUE and FALSE. 

 

Logical Operators 

Relational Operators 

AND, OR, NOT 

<, <=,>,>=, =, != 
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7. The following looping statements are employed. 

 
For, while and repeat-until 

While Loop: 

While < condition > do 

{ 

<statement-1> 

. 

. 

. 
 

<statement-n> 

} 
 

For Loop: 

For variable: = value-1 to value-2 step step do 
 

{ 

<statement-1> 

. 

. 

. 

<statement-n> 

} 

repeat-until: 
 

repeat 

<statement-1> 

. 

. 

. 

<statement-n> 

until<condition> 

 
8. A conditional statement has the following forms. 

 
If <condition> then <statement> If 

<condition> then <statement-1> 

Else <statement-1> 

 
Case statement: 

 

Case 

{ 

 
 
 

 
 
 

} 
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: <condition-1> : <statement-
1> 

. 

. 

. 

: <condition-n> : <statement-
n> 

: else : <statement-n+1> 
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9. Input and output are done using the instructions read & write. 

 
10. There is only one type of procedure: 

Algorithm, the heading takes the form, 

 
Algorithm Name (Parameter lists) 

 
As an example, the following algorithm fields & returns the maximum of ‘n’ 

given numbers: 

 

3. algorithm Max(A,n) 

4. // A is an array of size n 

5. { 

6. Result := A[1]; 

7. for I:= 2 to n do 

8. if A[I] > Result then 

9. Result :=A[I]; 

10. return Result; 

11.} 

 
 

In this algorithm (named Max), A & n are procedure parameters. 

Result & I are Local variables. 

 
Next we present 2 examples to illustrate the process of translation 

problem into an algorithm. 

 

Selection Sort: 

 
1. Suppose we Must devise an algorithm that sorts a collection of n>=1 

elements of arbitrary type. 

 

2. A Simple solution given by the following. 

 
3. ( From those elements that are currently unsorted ,find the smallest & place 

it next in the sorted list.) 

 

Algorithm: 

 
1. For i:= 1 to n do 

2. { 

3. Examine a[I] to a[n] and suppose the smallest element is at 

a[j]; 

4. Interchange a[I] and a[j]; 5. 

} 

 
Finding the smallest element (sat a[j]) and interchanging it with a[ i ] 
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1. We can solve the latter problem using the code, 

 
t := a[i]; 

a[i]:=a[j]; 

a[j]:=t; 

 

2. The first subtask can be solved by assuming the minimum is a[ I 

];checking a[I] with a[I+1],a[I+2]…….,and whenever a smaller element is 

found, regarding it as the new minimum. a[n] is compared with the current 

minimum. 

 

3. Putting all these observations together, we get the algorithm Selection sort. 

 

Theorem: 

Algorithm selection sort(a,n) correctly sorts a set of n>=1 elements .The result 

remains is a a[1:n] such that a[1] <= a[2] ….<=a[n]. 

 

Selection Sort: 

Selection Sort begins by finding the least element in the list. This element 

is moved to the front. Then the least element among the remaining element is found out 

and put into second position. This procedure is repeated till the entire list has been 

studied. 

 

Example: 

 
LIST L = 3,5,4,1,2 

 
1 is selected , 1,5,4,3,2 

2 is selected, 1,2,4,3,5 

3 is selected, 1,2,3,4,5 

4 is selected, 1,2,3,4,5 
 

Proof:  
We first note that any I, say I=q, following the execution of lines 6 to 9,it is 

the case that a[q] Þ a[r],q<r<=n. 

Also observe that when ‘i’ becomes greater than q, a[1:q] is unchanged. 

Hence, following the last execution of these lines (i.e. I=n).We have a[1] 

<= a[2] <=……a[n]. 

We observe this point that the upper limit of the for loop in the line 4 can 

be changed to n-1 without damaging the correctness of the algorithm. 
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. 

. 

. 

 

Algorithm: 

 
1. Algorithm selection sort (a,n) 

2. // Sort the array a[1:n] into non-decreasing order. 3. { 

4. for I:=1 to n do 

5. { 

6. j:=I; 

7. for k:=i+1 to n do 

8. if (a[k]<a[j]) 

9. t:=a[I]; 

10. a[I]:=a[j]; 

11. a[j]:=t; 

12. } 

13.   } 1.2.2.Recursive 

Algorithms: 

A Recursive function is a function that is defined in terms of itself. 

Similarly, an algorithm is said to be recursive if the same algorithm is 

invoked in the body. 

An algorithm that calls itself is Direct Recursive. 

Algorithm ‘A’ is said to be Indirect Recursive if it calls another 

algorithm which in turns calls ‘A’. 

The Recursive mechanism, are externally powerful, but even more 

importantly, many times they can express an otherwise complex process 

very clearly. Or these reasons we introduce recursion here. 

 

The following 2 examples show how to develop a recursive 

algorithms. 

 

In the first, we consider the Towers of Hanoi problem, and in 

the second, we generate all possible permutations of a list of 

characters. 

 

Towers of Hanoi: 
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Tower A Tower B 

Tower C 
 
 

It is Fashioned after the ancient tower of Brahma ritual. 

According to legend, at the time the world was created, there was a 

diamond tower (labeled A) with 64 golden disks. 

The disks were of decreasing size and were stacked on the tower in 

decreasing order of size bottom to top. 

Besides these tower there were two other diamond towers(labeled B & C) 

Since the time of creation, Brehman priests have been 

attempting to move the disks from tower A to tower B using tower C, for 

intermediate storage. 

o As the disks are very heavy, they can be moved only one at a time. 

o In addition, at no time can a disk be on top of a smaller disk. According to 

legend, the world will come to an end when the priest have completed this task. 

A very elegant solution results from the use of recursion. 

o Assume that the number of disks is ‘n’. 

o To get the largest disk to the bottom of tower B, we move the remaining ‘n- 1’ 

disks to tower C and then move the largest to tower B. 

o Now we are left with the tasks of moving the disks from tower C to B. 

o To do this, we have tower A and B available. 

o The fact, that towers B has a disk on it can be ignored as the disks larger than 

the 

disks being moved from tower C and so any disk scan be placed on top of 

it. 
 

Algorithm: 

 
1. Algorithm TowersofHanoi(n,x,y,z) 

2. //Move the top ‘n’ disks from tower x to tower y. 3. { 

 
. 

. 

. 
 

 
 
 

 
tower “ ,Y); 

4. if(n>=1) then 

5. { 

6. TowersofHanoi(n-1,x,z,y); 

7. Write(“move top disk from tower “ X ,”to top of 

 
Towersofhanoi(n-1,z,y,x); 

} 

} 
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2. Permutation Generator: 

 
Given a set of n>=1elements, the problem is to print all possible permutations of 

this set. 

For example, if the set is {a,b,c} ,then the set of permutation is, 

 
{ (a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)} 

1.  It is easy to see that given ‘n’ elements there are n! different 

permutations. 

8. A simple algorithm can be obtained by looking at the case of 4 

statement(a,b,c,d) 

9. The Answer can be constructed by writing 

 
o a followed by all the permutations of (b,c,d) 

o b followed by all the permutations of(a,c,d) 

o c followed by all the permutations of (a,b,d) 

o d followed by all the permutations of (a,b,c) 
 

Algorithm: 

 
Algorithm perm(a,k,n) 

{ 

if(k=n) then write (a[1:n]); // output permutation else 

//a[k:n] ahs more than one permutation 

// Generate this recursively. for 

I:=k to n do 

{ 

t:=a[k]; 

a[k]:=a[I]; 

a[I]:=t; 

perm(a,k+1,n); 

//all permutation of a[k+1:n] 

t:=a[k]; 

a[k]:=a[I]; 

a[I]:=t; 

} 

} 

 
 PERFORMANCE ANALYSIS: 

 
Space Complexity: 

The space complexity of an algorithm is the amount of money it needs 

to run to compilation. 

 

Time Complexity: 

The time complexity of an algorithm is the amount of computer time 

it needs to run to compilation. 
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 Space Complexity: 

 
Space Complexity Example: 

Algorithm abc(a,b,c) 

{ 

return a+b++*c+(a+b-c)/(a+b) +4.0; 

} 

 
The Space needed by each of these algorithms is seen to be the sum of the 

following component. 

 

1.A fixed part that is independent of the characteristics (eg:number,size)of the inputs 

and outputs. 

The part typically includes the instruction space (ie. Space for the code), space 

for simple variable and fixed-size component variables (also called aggregate) space 

for constants, and so on. 

A variable part that consists of the space needed by component variables 

whose size is dependent on the particular problem instance being solved, the 

space needed by referenced variables (to the extent that is depends on instance 

characteristics), and the recursion stack space. 

 
 

o The space requirement s(p) of any algorithm p may therefore be 

written as, 

S(P) = c+ Sp(Instance characteristics) 

Where ‘c’ is a constant. 

 
Example 2: 

 
Algorithm sum(a,n) 

{ 

s=0.0; 

for I=1 to n do 

s= s+a[I]; 

return s; 

} 
 

1. The problem instances for this algorithm are characterized by n,the number of 

elements to be summed. The space needed d by ‘n’ is one word, since it is of 

type integer. 

2. The space needed by ‘a’a is the space needed by variables of tyepe array of 

floating point numbers. 

3. This is atleast ‘n’ words, since ‘a’ must be large enough to hold the ‘n’ 

elements to be summed. 

4. So,we obtain Ssum(n)>=(n+s) 

[ n for a[],one each for n,I a& s] 
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1.3.2.Time Complexity: 

The time T(p) taken by a program P is the sum of the compile time and the run 

time(execution time) 

 

The compile time does not depend on the instance characteristics. Also we may 

assume that a compiled program will be run several times without recompilation 

.This rum time is denoted by tp(instance characteristics). 

 
The number of steps any problem statemn t is assigned depends on the kind of 

statement. 

 

For example, comments 0 steps. 

Assignment statements 1 steps. 

[Which does not involve any calls to other algorithms] 

Interactive statement such as for, while & repeat-until Control part of the statement. 

 

We introduce a variable, count into the program statement to increment count with 

initial value 0.Statement to increment count by the appropriate amount are introduced 

into the program. 

This is done so that each time a statement in the original program is executes 

count is incremented by the step count of that statement. 

Algorithm: Algorithm 

sum(a,n) 

{ 

s= 0.0; 

count = count+1; 

for I=1 to n do 

{ 

count =count+1; 

s=s+a[I]; 

count=count+1; 

} 

count=count+1; 

count=count+1; 

return s; 

} 

If the count is zero to start with, then it will be 2n+3 on termination. 

 
2. The second method to determine the step count of an algorithm is to build 

a table in which we list the total number of steps contributes by each statement. 

First determine the number of steps per execution (s/e) of the statement and 

the total number of times (ie., frequency) each statement is executed. 

 

By combining these two quantities, the total contribution of all statements, the 

step count for the entire algorithm is obtained. 
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Statement S/e Frequency Total 

1. Algorithm Sum(a,n) 0 - 0 

2.{  0 - 0 

3. S=0.0; 1 1 1 

4. for I=1 to n do 1 n+1 n+1 

5. s=s+a[I]; 1 n n 

6. return s; 1 1 1 

7. } 0 - 0 

Total   2n+3 
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Average –Case Analysis 

 
Most of the time, average-case analysis are performed under the more or less 

realistic assumption that all instances of any given size are equally likely. 

 

For sorting problems, it is simple to assume also that all the elements to be sorted 

are distinct. 

Suppose we have ‘n’ distinct elements to sort by insertion and all n! 

permutation of these elements are equally likely. 

To determine the time taken on a average by the algorithm ,we could add the 

times required to sort each of the possible permutations ,and then divide by n! the 

answer thus obtained. 

An alternative approach, easier in this case is to analyze directly the time 

required by the algorithm, reasoning probabilistically as we proceed. 

For any I,2 I n, consider the sub array, T[1….i]. 

The partial rank of T[I] is defined as the position it would occupy if the sub array 

were sorted. 

For Example, the partial rank of T[4] in [3,6,2,5,1,7,4] in 3 because T[1….4] once 

sorted is [2,3,5,6]. 

Clearly the partial rank of T[I] does not depend on the order of the element in 

Sub array T[1…I-1]. 

Analysis 

Best case: 

This analysis constrains on the input, other than size. Resulting in the fasters 

possible run time 
 

Worst case: 

This analysis constrains on the input, other than size. Resulting in 

the fasters possible run time 
 

Average case: 

type of input. 

Complexity: 

 
This type of analysis results in average running time over every 

 
 
 
Complexity refers to the rate at which the storage time grows as a 

function of the problem size 
 

Asymptotic analysis: 

Expressing the complexity in term of its relationship to know 

function. This type analysis is called asymptotic analysis. 
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 ASYMPTOTIC NOTATION: 

 
Big ‘oh’: the function f(n)=O(g(n)) iff there exist positive constants c and no such that 

f(n)≤c*g(n) for all n, n ≥ no. 

 

Omega: the function f(n)=Ω(g(n)) iff there exist positive constants c and no such that 

f(n) ≥ c*g(n) for all n, n ≥ no. 

 

Theta: the function f(n)=ө(g(n)) iff there exist positive constants c1,c2 and no such that c1 

g(n) ≤ f(n) ≤ c2 g(n) for all n, n ≥ no. 

 

 Recursion: 

Recursion may have the following definitions: 

-The nested repetition of identical algorithm is recursion. 

-It is a technique of defining an object/process by itself. 

-Recursion is a process by which a function calls itself repeatedly until some 

specified condition has been satisfied. 

 

When to use recursion: 

 
Recursion can be used for repetitive computations in which each action is stated 

in terms of previous result. There are two conditions that must be satisfied by any 

recursive procedure. 

 

1 .Each time a function calls itself it should get nearer to the solution. 

2 .There must be a decision criterion for stopping the process. 

 
In making the decision about whether to write an algorithm in recursive or non- recursive 

form, it is always advisable to consider a tree structure for the problem. If the structure is 

simple then use non- recursive form. If the tree appears quite bushy, with little 

duplication of tasks, then recursion is suitable. 

 

The recursion algorithm for finding the factorial of a number is given below, 

Algorithm : factorial-recursion 

Input : n, the number whose factorial is to be found. Output : f, 

the factorial of n 

Method : if(n=0) 

f=1 

else 

f=factorial(n-1) * n if 

end 

algorithm ends. 

 
The general procedure for any recursive algorithm is as follows, 

1. Save the parameters, local variables and return addresses. 
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2. If the termination criterion is reached perform final computation and goto 

step 3 otherwise perform final computations and goto step 1 
 

3. Restore the most recently saved parameters, local variable and return 

address and goto the latest return address. 

 

Iteration v/s Recursion: 
 

Demerits of recursive algorithms: 

1. Many programming languages do not support recursion; hence, recursive 

mathematical function is implemented using iterative methods. 

 

2. Even though mathematical functions can be easily implemented using recursion 

it is always at the cost of execution time and memory space. For example, the 

recursion tree for generating 6 numbers in a Fibonacci series generation is given 

in fig 2.5. A Fibonacci series is of the form 0,1,1,2,3,5,8,13,…etc, where the third 

number is the sum of preceding two numbers and so on. It can be noticed from 

the fig 2.5 that, f(n-2) is computed twice, f(n-3) is computed thrice, f(n-4) is 

computed 5 times. 

 
3. A recursive procedure can be called from within or outside itself and to ensure its 

proper functioning it has to save in some order the return addresses so that, a 

return to the proper location will result when the return to a calling statement is 

made. 

4. The recursive programs needs considerably more storage and will take more 

time. 

 

Demerits of iterative methods : 

1. Mathematical functions such as factorial and Fibonacci series generation can 

be easily implemented using recursion than iteration. 

2. In iterative techniques looping of statement is very much necessary. Recursion 

is a top down approach to problem solving. It divides the problem into pieces or selects 

out one key step, postponing the rest. 

Iteration is more of a bottom up approach. It begins with what is known and from this 

constructs the solution step by step. The iterative function 
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obviously uses time that is O(n) where as recursive function has an exponential time 

complexity. 

It is always true that recursion can be replaced by iteration and stacks. It is also true 

that stack can be replaced by a recursive program with no stack. 

 
 

 
 

SOLVING RECURRENCES :-( Happen again (or) repeatedly) 

 
1. The indispensable last step when analyzing an algorithm is often to solve a 

recurrence equation. 

2. With a little experience and intention, most recurrence can be solved by 

intelligent guesswork. 

3. However, there exists a powerful technique that can be used to solve 

certain classes of recurrence almost automatically. 

4. This is a main topic of this section the technique of the characteristic 

equation. 

 

Intelligent guess work: 

 
This approach generally proceeds in 4 stages. 

 
Calculate the first few values of the recurrence 

Look for regularity. 

Guess a suitable general form. 

And finally prove by mathematical induction(perhaps constructive 

induction). 

 

Then this form is correct. 

Consider the following recurrence, 
 

 

 
T(n) = 

0 

3T(n ÷ 2)+n 

if n=0 

otherwise 
 
 

5. First step is to replace n ÷ 2 by n/2 
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6. It is tempting to restrict ‘n’ to being ever since in that case n÷2 = n/2, but 

recursively dividing an even no. by 2, may produce an odd no. larger than 1. 

7. Therefore, it is a better idea to restrict ‘n’ to being an exact power of 2. 

 
8. First, we tabulate the value of the recurrence on the first few powers of 2. 

 
 

 
n 1 2 4 8 16 32 

T(n) 1 5 19 65 211 665 

 

* For instance, T(16) = 3 * T(8) +16 

= 3*65+16 

= 211. 

 
* Instead of writing T(2) = 5, it is more 

useful to write T(2)=3*1+2. 
 

Then, 

T(A) = 3 * T(2) +4 
= 3*(3*1+2)+4 

= (32*1)+(3*2)+4 
 
 

* We continue in this way, writing ‘n’ as an explicit power of 2. 

 
n 

 
o 

o 
22 

T(n) 

 
1 
3*1+2 
32*1+3*2+22

 

23 33*1+32*2+3*22 +23
 

24 34*1+33*2+32*22+3*23+24
 

25 35*1+34*2+33*22+32*23+3*24+25
 

9. The pattern is now obvious. 
 

T(2k ) = 3k20 + 3k-121 + 3k-222+…+312k-1 + 302k. 

= ∑ 3k-i 2i 

= 3k ∑ (2/3)i 

= 3k * [(1 – (2/3)k + 1) / (1 – (2/3)] 

= 3k+1 – 2k+1 
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Proposition: (Geometric Series) 

 
Let Sn be the sum of the first n terms of the geometric series a, ar, 

ar2….Then   

Sn = a(1-rn)/(1-r), except in the special case when r = 1; when Sn = an. 

= 3k * [ (1 – (2/3) k+1) / (1 – (2/3))] 

= 3k * [((3 k+1 – 2 k+1)/ 3 k+1) / ((3 – 2) / 3)] 

 
= 3k * 

3 k+1 – 2k+1 3 
----------------- * ---- 

 3 k+1 1 

= 3k * 
3 k+1 – 2k+1  

-----------------  

 
3k+1-1 

 

= 3k+1 – 2k+1 

 
* It is easy to check this formula against our earlier tabulation 

 
  EG:2  
 0 n=0  

tn = 5 n=1  

3tn-1 + 4tn-2, otherwise 

tn = 3tn-1 – 4tn-2 = 0General function 

Characteristics Polynomial, x2 – 3x – 4 = 0 

(x – 4)(x + 1) = 0 

Roots r1 = 4, r2 = -1 

General Solution, fn = C1r1
n + C2 r2

n
 (A) 

n=0 C1 + C2 = 0 (1)  

n=1 C1r1 + C2r2 = 5 (2)  

Eqn 1 C1 = -C2 
   

sub C1 value in Eqn (2) 
-C2r1 + C2r2 = 5 
C2(r2 – r1) = 5 

 5   

C2 = -------   

 r2 – r1   

 5   

= ------   

 -1+4   
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DIVIDE AND CONQUER 

 

= 5/(-5) = -1 
 

C2=-1 , C1=1 

Sub C1, C2, r1 & r2 value in equation (A) 

fn = 1. 4n + (-1) . (-1)n 

fn = 4n + 1n
 

 

 

 GENERAL METHOD: 

 

Given a function to compute on ‘n’ inputs the divide-and-conquer strategy 

suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ sub problems. 

 
These sub problems must be solved, and then a method must be found to 

combine sub solutions into a solution of the whole. 

 

If the sub problems are still relatively large, then the divide-and-conquer 

strategy can possibly be reapplied. 

 

Often the sub problems resulting from a divide-and-conquer design are of the 

same type as the original problem. 

 

For those cases the re application of the divide-and-conquer principle is 

naturally expressed by a recursive algorithm. 

 

D And C(Algorithm) is initially invoked as D and C(P), where ‘p’ is the 

problem to be solved. 

 

Small(P) is a Boolean-valued function that determines whether the i/p size is 

small enough that the answer can be computed without splitting. 

 

If this so, the function ‘S’ is invoked. 

 
Otherwise, the problem P is divided into smaller sub problems. 

 

These sub problems P1, P2 …Pk are solved by recursive application of D 

And C. 
 

Combine is a function that determines the solution to p using the solutions to the 

‘k’ sub problems. 
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If the size of ‘p’ is n and the sizes of the ‘k’ sub problems are n1, n2 ….nk, 

respectively, then the computing time of D And C is described by the recurrence 

relation. 
 

T(n)= { g(n) 

T(n1)+T(n2)+… ............... +T(nk)+f(n); 

n small 

otherwise. 
 

Where T(n) is the time for D And C on any I/p of size ‘n’. 

g(n) is the time of compute the 
answer directly for small 

I/ps. 

f(n) is the time for dividing P & combining the solution to sub 

problems. 
 

1) Algorithm D And C(P) 

2) { 

3) if small(P) then return S(P); 

4) else 

5) { 

6) divide P into smaller instances 

P1, P2… Pk, k>=1; 

7) Apply D And C to each of these sub problems; 

8) return combine (D And C(P1), D And C(P2),…….,D And C(Pk)); 9)

  } 

10) } 

 
The complexity of many divide-and-conquer algorithms is given by 

recurrences 

of the form 

T(n) = { T(1) n=1 

AT(n/b)+f(n) n>1 

Where a & b are known constants. 

We assume that T(1) is known & ‘n’ is a power of b(i.e., n=b^k) 

One of the methods for solving any such recurrence relation is called the 

substitution method. 

This method repeatedly makes substitution for each occurrence of the 

function. T is the Right-hand side until all such occurrences disappear. 

 

Example: 

11)  Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. We 

have, 

T(n) = 2T(n/2)+n 

= 2[2T(n/2/2)+n/2]+n 

= [4T(n/4)+n]+n 

= 4T(n/4)+2n 

= 4[2T(n/4/2)+n/4]+2n 

= 4[2T(n/8)+n/4]+2n 

= 8T(n/8)+n+2n 

= 8T(n/8)+3n 
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* 

* 

* 

 
In general, we see that T(n)=2^iT(n/2^i )+in., for any log n >=I>=1. T(n) 

 
=2^log n T(n/2^log n) + n log n 

 
Corresponding to the choice of i=logn 

Thus, T(n) = 2^log n T(n/2^log n) + n log n 

= n. T(n/n) + n log n 

= n. T(1) + n log n [since, log 1=0, 2^0=1] = 2n + n log n 

 
 

 BINARY SEARCH: 
 

1. Algorithm Bin search(a,n,x) 

2. // Given an array a[1:n] of elements in non-decreasing 

3. //order, n>=0,determine whether ‘x’ is present and 

4. // if so, return ‘j’ such that x=a[j]; else return 0. 5. { 

6. low:=1; high:=n; 

7. while (low<=high) do 

8. { 

9. mid:=[(low+high)/2]; 

10. if (x<a[mid]) then high; 

11. else if(x>a[mid]) then 

low=mid+1; 

12. else return mid; 

13. } 

14. return 0; 

15. } 

 
Algorithm, describes this binary search method, where Binsrch has 4I/ps a[], I , l & x. 

It is initially invoked as Binsrch (a,1,n,x) 

A non-recursive version of Binsrch is given below. This 

Binsearch has 3 i/ps a,n, & x. 

The while loop continues processing as long as there are more elements left to check. 

At the conclusion of the procedure 0 is returned if x is not present, or ‘j’ is 

returned, such that a[j]=x. 

We observe that low & high are integer Variables such that each time through the loop 

either x is found or low is increased by at least one or high is decreased at least one. 
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Thus we have 2 sequences of integers approaching each other and eventually low 

becomes > than high & causes termination in a finite no. of steps if ‘x’ is not present. 

 

Example: Let us select the 14 entries. 

-15,-6,0,7,9,23,54,82,101,112,125,131,142,151. 

Place them in a[1:14], and simulate the steps Binary search goes through as it 

searches for different values of ‘x’. 

Only the variables, low, high & mid need to be traced as we simulate the algorithm. 

We try the following values for x: 151, -14 and 9. for 

2 successful searches & 

1 unsuccessful search. 

 
Table. Shows the traces of Bin search on these 3 steps. 

 
X=151 low high mid 

 1 14 7 
 8 14 11 
 12 14 13 
 14 14 14 
   Found 

x=-14 low high mid 
 1 14 7 
 1 6 3 
 1 2 1 
 2 2 2 
 2 1 Not found 

x=9 low high mid 
 1 14 7 
 1 6 3 
 4 6 5 
   Found 

Theorem: Algorithm Binsearch(a,n,x) works correctly. 

Proof: 

We assume that all statements work as expected and that comparisons such as 

x>a[mid] are appropriately carried out. 

 

Initially low =1, high= n,n>=0, and a[1]<=a[2]<= .............. <=a[n]. 

If n=0, the while loop is not entered and is returned. 

 
Otherwise we observe that each time thro’ the loop the possible elements to be 

checked of or equality with x and a[low], a[low+1],……..,a[mid],……a[high]. 



 

If x=a[mid], then the algorithm terminates successfully. 

Otherwise, the range is narrowed by either increasing low to (mid+1) or 

decreasing high to (mid-1). 

Clearly, this narrowing of the range does not affect the outcome of the search. 

If low becomes > than high, then ‘x’ is not present & hence the loop is 

exited. 

 

 FINDING THE MAXIMUM AND MINIMUM: 

 
Let us consider another simple problem that can be solved by the divide- and-

conquer technique. 

 

The problem is to find the maximum and minimum items in a set of ‘n’ elements. 

 

In analyzing the time complexity of this algorithm, we once again 

concentrate on the no. of element comparisons. 

 

More importantly, when the elements in a[1:n] are polynomials, vectors, very 

large numbers, or strings of character, the cost of an element comparison is much 

higher than the cost of the other operations. 

 
Hence, the time is determined mainly by the total cost of the element comparison. 

 

Algorithm straight MaxMin(a,n,max,min) 

// set max to the maximum & min to the minimum of a[1:n] 

{ 

max:=min:=a[1]; 

for I:=2 to n do 

{ 

if(a[I]>max) then max:=a[I]; 

if(a[I]<min) then min:=a[I]; 

} 

} 

 
Algorithm: Straight forward Maximum & Minimum 

 
Straight MaxMin requires 2(n-1) element comparison in the best, average & worst 

cases. 

 

An immediate improvement is possible by realizing that the comparison a[I]<min is 

necessary only when a[I]>max is false. 

 

Hence we can replace the contents of the for loop by, 

If(a[I]>max) then max:=a[I]; 

Else if (a[I]<min) then min:=a[I]; 



 

 

Now the best case occurs when the elements are in increasing order. 

The no. of element comparison is (n-1). 

 
The worst case occurs when the elements are in decreasing order. The 

no. of elements comparison is 2(n-1) 

 
The average no. of element comparison is < than 2(n-1) 

 
On the average a[I] is > than max half the time, and so, the avg. no. of comparison is 3n/2-

1. 

A divide- and conquer algorithm for this problem would proceed as follows: Let 

P=(n, a[I] ,……,a[j]) denote an arbitrary instance of the problem. 

Here ‘n’ is the no. of elements in the list (a[I],….,a[j]) and we are interested in 

finding the maximum and minimum of the list. 

If the list has more than 2 elements, P has to be divided into smaller instances. For 

example , we might divide ‘P’ into the 2 instances, P1=([n/2],a[1], ......................... a[n/2]) & 

P2= (n-[n/2],a[[n/2]+1], ....... ,a[n]) 

 
After having divided ‘P’ into 2 smaller sub problems, we can solve them by 

recursively invoking the same divide-and-conquer algorithm. 

 

Algorithm: Recursively Finding the Maximum & Minimum 

 
1. Algorithm MaxMin (I,j,max,min) 

2. //a[1:n] is a global array, parameters I & j 

3. //are integers, 1<=I<=j<=n.The effect is to 

4. //set max & min to the largest & smallest value 

5. //in a[I:j], respectively. 

6. { 

7. if(I=j) then max:= min:= a[I]; 

8. else if (I=j-1) then // Another case of small(p) 9.

 { 

10. if (a[I]<a[j]) then 

11. { 

12. max:=a[j]; 

13. min:=a[I]; 

14. } 

15. else 

16. { 

17. max:=a[I]; 

18. min:=a[j]; 

19. } 

20. } 



 

21. else 

22. { 

23. // if P is not small, divide P into subproblems. 

24. // find where to split the set mid:=[(I+j)/2]; 

25. //solve the subproblems 

26. MaxMin(I,mid,max.min); 

27. MaxMin(mid+1,j,max1,min1); 

28. //combine the solution 

29. if (max<max1) then max=max1; 

30. if(min>min1) then min = min1; 

31. } 

32. } 

 
The procedure is initially invoked by the statement, 

MaxMin(1,n,x,y) 

Suppose we simulate MaxMin on the following 9 elements 

 
A: [1] [2] [3] [4] [5] [6] [7] [8] [9] 

22 13 -5 -8 15 60 17 31 47 

A good way of keeping track of recursive calls is to build a tree by adding a node each 

time a new call is made. 

For this Algorithm, each node has 4 items of information: I, j, max & imin. 

Examining fig: we see that the root node contains 1 & 9 as the values of I &j 

corresponding to the initial call to MaxMin. 

This execution produces 2 new calls to MaxMin, where I & j have the values 1, 5 & 6, 9 

respectively & thus split the set into 2 subsets of approximately the same size. 
From the tree, we can immediately see the maximum depth of recursion is 4. (including 

the 1st call) 

The include no.s in the upper left corner of each node represent the order in which max & 

min are assigned values. 

 

No. of element Comparison: 

If T(n) represents this no., then the resulting recurrence relations is 
 

T(n)={ T([n/2]+T[n/2]+2 

n=2 

n=1 

n>2 

 

When ‘n’ is a power of 2, n=2^k for some +ve integer ‘k’, then T(n) 

= 2T(n/2) +2 

= 2(2T(n/4)+2)+2 

= 4T(n/4)+4+2 

* 

* 

= 2^k-1T(2)+ 

= 2^k-1+2^k-2 

= 2^k/2+2^k-2 



 

= n/2+n-2 

= (n+2n)/2)-2 

T(N)=(3N/2)-2 

 
*Note that (3n/3)-3 is the best-average, and worst-case no. of comparisons when ‘n’ is 

a power of 2. 

 

 MERGE SORT 

 
As another example divide-and-conquer, we investigate a sorting algorithm that 

has the nice property that is the worst case its complexity is O(n log n) 

 

This algorithm is called merge sort 

We assume throughout that the elements are to be sorted in non- 

decreasing order. 

Given a sequence of ‘n’ elements a[1],…,a[n] the general idea is to imagine then 

split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n]. 

Each set is individually sorted, and the resulting sorted sequences are 

merged to produce a single sorted sequence of ‘n’ elements. 

Thus, we have another ideal example of the divide-and-conquer strategy in 

which the splitting is into 2 equal-sized sets & the combining operation is the merging of 

2 sorted sets into one. 

 

Algorithm For Merge Sort: 

 
1. Algorithm MergeSort(low,high) 

2. //a[low:high] is a global array to be sorted 

3. //Small(P) is true if there is only one element 

4. //to sort. In this case the list is already sorted. 5. { 

6. if (low<high) then //if there are more than one element 7.

 { 

8. //Divide P into subproblems 

9. //find where to split the set 

10. mid = [(low+high)/2]; 

11. //solve the subproblems. 

12. mergesort (low,mid); 

13. mergesort(mid+1,high); 

14. //combine the solutions . 

15. merge(low,mid,high); 

16. } 

17. } 

 
Algorithm: Merging 2 sorted subarrays using auxiliary storage. 

 
1. Algorithm merge(low,mid,high) 

2. //a[low:high] is a global array containing 

3. //two sorted subsets in a[low:mid] 



 

4. //and in a[mid+1:high].The goal is to merge these 2 sets into 

5. //a single set residing in a[low:high].b[] is an auxiliary global array. 6. { 

7. h=low; I=low; j=mid+1; 

8. while ((h<=mid) and (j<=high)) do 9.

 { 

10. if (a[h]<=a[j]) then 

11. { 

12. b[I]=a[h]; 

13. h = h+1; 

14. } 

15. else 

16. { 

17. b[I]= a[j]; 

18. j=j+1; 

19. } 

20. I=I+1; 

21. } 

22. if (h>mid) then 

23. for k=j to high do 

24. { 

25. b[I]=a[k]; 

26. I=I+1; 

27. } 

28. else 

29. for k=h to mid do 

30. { 

31. b[I]=a[k]; 

32. I=I+1; 

33. } 

34. for k=low to high do a[k] = b[k]; 

35. } 

 
Consider the array of 10 elements a[1:10] =(310, 285, 179, 652, 351, 423, 

861, 254, 450, 520) 

 
Algorithm Mergesort begins by splitting a[] into 2 sub arrays each of size five 

(a[1:5] and a[6:10]). 

The elements in a[1:5] are then split into 2 sub arrays of size 3 (a[1:3] ) and 

2(a[4:5]) 

Then the items in a a[1:3] are split into sub arrays of size 2 a[1:2] & 

one(a[3:3]) 

The 2 values in a[1:2} are split to find time into one-element sub arrays, and now 

the merging begins. 

 

(310| 285| 179| 652, 351| 423, 861, 254, 450, 520) 

 
Where vertical bars indicate the boundaries of sub arrays. 
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Elements a[I] and a[2] are merged to yield, 

(285, 310|179|652, 351| 423, 861, 254, 450, 520) 

 
Then a[3] is merged with a[1:2] and 

(179, 285, 310| 652, 351| 423, 861, 254, 450, 520) 

 
Next, elements a[4] & a[5] are merged. 

(179, 285, 310| 351, 652 | 423, 861, 254, 450, 520) 

 
And then a[1:3] & a[4:5] 

(179, 285, 310, 351, 652| 423, 861, 254, 450, 520) 

 
Repeated recursive calls are invoked producing the following sub arrays. (179, 

285, 310, 351, 652| 423| 861| 254| 450, 520) 

Elements a[6] &a[7] are merged. 

Then a[8] is merged with a[6:7] 

(179, 285, 310, 351, 652| 254,423, 861| 450, 520) 

 
Next a[9] &a[10] are merged, and then a[6:8] & a[9:10] (179, 

285, 310, 351, 652| 254, 423, 450, 520, 861 ) 

 

At this point there are 2 sorted sub arrays & the final merge produces the 

fully sorted result. 

(179, 254, 285, 310, 351, 423, 450, 520, 652, 861) 

 
IF THE TIME FOR THE MERGING OPERATIONS IS PROPORTIONAL TO ‘N’, 

THEN THE COMPUTING TIME FOR MERGE SORT IS DESCRIBED BY THE 

RECURRENCE RELATION. 

 

 
T(N)={A   N=1,’A’ A CONSTANT 

2T(N/2)+CN N>1,’C’ A CONSTANT. 

 
When ‘n’ is a power of 2, n= 2^k, we can solve this equation by successive 

substitution. 

 

T(n) =2(2T(n/4) +cn/2) +cn 

= 4T(n/4)+2cn 

= 4(2T(n/8)+cn/4)+2cn 

* 

* 

= 2^k T(1)+kCn. 

= an + cn log n. 
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It is easy to see that if s^k<n<=2^k+1, then T(n)<=T(2^k+1). Therefore, 

T(n)=O(n log n) 

 QUICK SORT 

 

The divide-and-conquer approach can be used to arrive at an efficient sorting 

method different from merge sort. 

 

In merge sort, the file a[1:n] was divided at its midpoint into sub arrays which 

were independently sorted & later merged. 

 

In Quick sort, the division into 2 sub arrays is made so that the sorted sub arrays 

do not need to be merged later. 

 

This is accomplished by rearranging the elements in a[1:n] such that a[I]<=a[j] for 

all I between 1 & n and all j between (m+1) & n for some m, 1<=m<=n. 

 
 

Thus the elements in a[1:m] & a[m+1:n] can be independently sorted. No 

merge is needed. This rearranging is referred to as partitioning. 

Function partition of Algorithm accomplishes an in-place partitioning of the 

elements of a[m:p-1] 

 

It is assumed that a[p]>=a[m] and that a[m] is the partitioning element. If m=1 & 

p-1=n, then a[n+1] must be defined and must be greater than or equal to all elements in 

a[1:n] 

 

The assumption that a[m] is the partition element is merely for convenience, 

other choices for the partitioning element than the first item in the set are better in 

practice. 

 

The function interchange (a,I,j) exchanges a[I] with a[j]. 

 
Algorithm: Partition the array a[m:p-1] about a[m] 

 
1. Algorithm Partition(a,m,p) 

2. //within a[m],a[m+1],…..,a[p-1] the elements 

3. // are rearranged in such a manner that if 

4. //initially t=a[m],then after completion 

5. //a[q]=t for some q between m and 

6. //p-1,a[k]<=t for m<=k<q, and 

7. //a[k]>=t for q<k<p. q is returned 

8. //Set a[p]=infinite. 
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9. { 

10. v=a[m];I=m;j=p; 

11. repeat 

12. { 

13. repeat 

14.  I=I+1; 

15. until(a[I]>=v); 

16. repeat 

17.  j=j-1; 

18. until(a[j]<=v); 

19. if (I<j) then interchange(a,i.j); 

20. }until(I>=j); 

21. a[m]=a[j]; a[j]=v; 

22. retun j; 

23. } 

 
1. Algorithm Interchange(a,I,j) 

2. //Exchange a[I] with a[j] 

3. { 

4. p=a[I]; 

5. a[I]=a[j]; 

6. a[j]=p; 

7. } 

 
Algorithm: Sorting by Partitioning 

 
1. Algorithm Quicksort(p,q) 

2. //Sort the elements a[p],….a[q] which resides 

3. //is the global array a[1:n] into ascending 

4. //order; a[n+1] is considered to be defined 

5. // and must be >= all the elements in a[1:n] 6.

 { 

7. if(p<q) then // If there are more than one element 8.

 { 

9. // divide p into 2 subproblems 

10. j=partition(a,p,q+1); 

11. //’j’ is the position of the partitioning element. 

12. //solve the subproblems. 

13. quicksort(p,j-1); 

14. quicksort(j+1,q); 

15. //There is no need for combining solution. 

16. } 

17. } 

Record Program: Quick Sort 

#include <stdio.h> 

#include <conio.h> 
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int a[20]; 

main() 

{ 

int n,I; 

clrscr(); 

printf(“QUICK SORT”); 

printf(“\n Enter the no. of elements “); 

scanf(“%d”,&n); 

printf(“\nEnter the array elements”); 

for(I=0;I<n;I++) 

scanf(“%d”,&a[I]); 

quicksort(0,n-1); 

printf(“\nThe array elements are”); 

for(I=0;I<n;I++) 

printf(“\n%d”,a[I]); 

getch(); 

} 

quicksort(int p, int q) 

{ 

int j; 

if(p,q) 

{ 

j=partition(p,q+1); 

quicksort(p,j-1); 

quicksort(j+1,q); 

} 

} 
 

Partition(int m, int p) 

{ 

int v,I,j; 

v=a[m]; 

i=m; 

j=p; 

do 

{ 

do 

i=i+1; 

while(a[i]<v); 

if (i<j) 

interchange(I,j); 

} while (I<j); 

a[m]=a[j]; a[j]=v; 

 

return j; 

} 

 
Interchange(int I, int j) 
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{ 

int p; p= 

a[I]; 

a[I]=a[j]; 

a[j]=p; 

} 
 

Output: 

Enter the no. of elements 5 

Enter the array elements 

3 

8 

1 

5 

2 

The sorted elements are, 1 

2 

3 

5 

8 

 
 STRASSEN’S MATRIX MULTIPLICAION 

 
1.  Let A and B be the 2 n*n Matrix. The product matrix C=AB is calculated by 

using the formula, 

 

C (i ,j )= A(i,k) B(k,j) for all ‘i’ and and j between 1 and n. 

 
2. The time complexity for the matrix Multiplication is O(n^3). 

 
3.  Divide and conquer method suggest another way to compute the product of 

n*n matrix. 

 

4.  We assume that N is a power of 2 .In the case N is not a power of 2 ,then 

enough rows and columns of zero can be added to both A and B .SO that the resulting 

dimension are the powers of two. 

 

5.  If n=2 then the following formula as a computed using a matrix 

multiplication operation for the elements of A & B. 

 

6.  If n>2,Then the elements are partitioned into sub matrix n/2*n/2..since ‘n’ is a 

power of 2 these product can be recursively computed using the same formula .This 

Algorithm will continue applying itself to smaller sub matrix until ‘N” become suitable 

small(n=2) so that the product is computed directly . 

 

7. The formula are 



 

C11 

C21 

2 2  2 2  1 1  1 1 4 4  4 4 

2 2 2 2 * 1 1   1 1 = 4 4 4 4 

2 2  2 2  1 1  1 1 4 4  4 4 
2 2  2 2  1 1   1 1 4 4  4 4 

 

 

A11 A12 B11 B12 

* = 

A21 A21 B21 B22 

C12 

C22 

 
 

C11 = A11 B11 + A12 B21 

C12 = A11 B12 + A12 B22 

C21 = A21 B11 + A22 B21 

C22 = A21 B12 + A22 B22 
 

 
For EX:      

 2222 1 1 1 1 

4*4= 2222  1111 
 2222 * 1 1 1 1 
 2222 1 1 1 1 

 
 

The Divide and conquer method 
 
 
 

 

8.  To compute AB using the equation we need to perform 8 multiplication of 

n/2*n/2 matrix and from 4 addition of n/2*n/2 matrix. 

9. Ci,j are computed using the formula in equation 4 

10.  As can be sum P, Q, R, S, T, U, and V can be computed using 7 Matrix 

multiplication and 10 addition or subtraction. 

11. The Cij are required addition 8 addition or subtraction. 
 

 

T(n)= b 

7T(n/2)+an^2 

n<=2 a &b are 

n>2 constant 
 

Finally we get T(n) =O( n ^log27) 

Example 

4  4 4 4  

* 

4  4 4 4  
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P=(4+4) * (4+4)=64 

Q=(4+4)4=32 

R=4(4-4)=0 

S=4(4-4)=0 

T=(4+4)4=32 

U=(4-4)(4+4)=0 

V=(4-4)(4+4)=0 

C11=(64+0-32+0)=32 

C12=0+32=32 

C21=32+0=32 

C22=64+0-32+0=32 
 

So the answer c(i,j) is 32 32 

 
32 32 

 
since n/2n/2 &matrix can be can be added in Cn for some constant C, The overall 

computing time T(n) of the resulting divide and conquer algorithm is given by the 

sequence. 

 

T(n)= b n<=2 a &b are 
 8T(n/2)+cn^2 n>2 constant 

 

That is T(n)=O(n^3) 

 
*    Matrix multiplication are more expensive then the matrix addition O(n^3).We can 

attempt to reformulate the equation for Cij so as to have fewer multiplication and 

possibly more addition . 

12.  Stressen has discovered a way to compute the Cij of equation (2) using only 

7 multiplication and 18 addition or subtraction. 

13.  Strassen’s formula are 

P= (A11+A12)(B11+B22) 

Q= (A12+A22)B11 

R= A11(B12-B22) 

S= A22(B21-B11) 

T= (A11+A12)B22 

U= (A21-A11)(B11+B12) 

V= (A12-A22)(B21+B22) 

 
C11=P+S-T+V 

C!2=R+t 

C21=Q+T 

C22=P+R-Q+V 
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 GREEDY METHOD 

Greedy method is the most straightforward designed technique. 
 

As the name suggest they are short sighted in their approach taking decision on the 

basis of the information immediately at the hand without worrying about the effect these 

decision may have in the future. 

DEFINITION: 
 

A problem with N inputs will have some constraints .any subsets that satisfy these 

constraints are called a feasible solution. 

A feasible solution that either maximize can minimize a given objectives function is 

called an optimal solution. 

Control algorithm for Greedy Method: 

1.Algorithm Greedy (a,n) 

2.//a[1:n] contain the ‘n’ inputs 3. 

{ 

4.solution =0;//Initialise the solution. 

5.For i=1 to n do 

6.{ 

7.x=select(a); 

8.if(feasible(solution,x))then 

9.solution=union(solution,x); 

10.} 

11.return solution; 

12.} 

 

* The function select an input from a[] and removes it. The select input value is assigned 

to X. 

 

 
Feasible is a Boolean value function that determines whether X can be 

included into the solution vector. 

UNIT - II 
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The function Union combines X with The solution and updates the objective 

function. 

The function Greedy describes the essential way that a greedy algorithm will once 

a particular problem is chosen ands the function subset, feasible & union are 

properly implemented. 

Example 

Suppose we have in a country the following coins are available : Dollars(100 

cents) 

Quarters(25 cents) 

Dimes( 10 cents) 

Nickel(5 Cents) 

Pennies(1 cent) 

Our aim is paying a given amount to a customer using the smallest possible 

number of coins. 

For example if we must pay 276 cents possible solution then, 1 

doll+7 q+ 1 pen 9 coins 2 

doll +3Q +1 pen 6 coins 

2 doll+7dim+1 nic +1 pen 11 coins. 

 KNAPSACK PROBLEM 

we are given n objects and knapsack or bag with capacity M object I has a weight Wi 

where I varies from 1 to N. 

The problem is we have to fill the bag with the help of N objects and the resulting profit 

has to be maximum. 

Formally the problem can be stated as 

Maximize xipi subject to XiWi<=M 

Where Xi is the fraction of object and it lies between 0 to 1. 
 

There are so many ways to solve this problem, which will give many feasible 

solution for which we have to find the optimal solution. 

But in this algorithm, it will generate only one solution which is going to be 

feasible as well as optimal. 
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First, we find the profit & weight rates of each and every object and sort it according to 

the descending order of the ratios. 

Select an object with highest p/w ratio and check whether its height is lesser than the 

capacity of the bag. 

If so place 1 unit of the first object and decrement .the capacity of the bag by the weight 

of the object you have placed. 

Repeat the above steps until the capacity of the bag becomes less than the weight of the 

object you have selected .in this case place a fraction of the object and come out of the 

loop. 

Whenever you selected. 

ALGORITHM: 

1.Algorithm Greedy knapsack (m,n) 2//P[1:n] 

and the w[1:n]contain the profit 3.// & weight 

res’.of the n object ordered. 4.//such that 

p[i]/w[i] >=p[i+1]/W[i+1] 

5.//n is the Knapsack size and x[1:n] is the solution vertex. 6.{ 

7. for I=1 to n do a[I]=0.0; 

8.U=n; 

9.For I=1 to n do 

10.{ 

11.if (w[i]>u)then break; 

13.x[i]=1.0;U=U-w[i] 

14.} 

15.if(i<=n)then x[i]=U/w[i]; 

16.} 

Example: 

Capacity=20 

N=3 ,M=20 

Wi=18,15,10 
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Pi=25,24,15 

Pi/Wi=25/18=1.36,24/15=1.6,15/10=1.5 

Descending Order Pi/Wi 1.6 1.5 1.36 
 

Pi = 24 15 25 

Wi = 15 
 

10 18 

Xi = 1 5/10 0 

PiXi=1*24+0.5*15 31.5 

The optimal solution is 31.5 
 

X1 X2 X3  WiXi PiXi 

½1/3¼ 
 

16.6 24.25 

1 2/5 0 20 18.2 

0 2/3 1 20 31 

0 1 ½ 20 31.5 

Of these feasible solution Solution 4 yield the Max profit .As we shall soon see this 

solution is optimal for the given problem instance. 

 JOB SCHEDULING WITH DEAD LINES 

The problem is the number of jobs, their profit and deadlines will be given and we have 

to find a sequence of job, which will be completed within its deadlines, and it should yield 

a maximum profit. 

Points To remember: 

To complete a job, one has to process the job or a action for one unit of time. Only 

one machine is available for processing jobs. 

A feasible solution for this problem is a subset of j of jobs such that each job in this 

subject can be completed by this deadline. 

If we select a job at that time , 
 

Since one job can be processed in a single m/c. The other job has to be in its 

waiting state until the job is completed and the machine becomes free. 

So the waiting time and the processing time should be less than or equal to the dead 

line of the job. 
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ALGORITHM: 

Algorithm JS(d,j,n) 

//The job are ordered such that p[1]>p[2]…>p[n] //j[i] is 

the ith job in the optimal solution 

// Also at terminal d [ J[ i]<=d[ J {i+1],1<i<k 

{ 

d[0]= J[0]=0; 

 
 
 
 
 
 

{ // consider jobs in non increasing order of P[I];find the position for I and check feasibility 

insertion 

r=k; 

while((d[J[r]]>d[i] )and 

(d[J[r]] = r)do r =r-1; 
 

if (d[J[r]]<d[I])and (d[I]>r))then 

{ 

for q=k to (r+1) step –1 do J [q+1]=j[q] 

J[r+1]=i; 

 

} 

} 

return k; 

} 

 

 
1. n=5 (P1,P2,…P5)=(20,15,10,5,1) 

 

(d1,d2….d3)=(2,2,1,3,3) 



 

Feasible solution Processing Sequence Value 

(1) (1) 
 

20 

(2) (2) 
 

15 

(3) (3) 
 

10 

(4) (4) 
 

5 

(5) (5) 
 

1 

1,2) (2,1) 
 

35 

(1,3) (3,1) 
 

30 

(1,4) (1,4) 
 

25 

(1,5) (1,5) 
 

21 

(2,3) (3,2) 
 

25 

(2,4) (2,4) 
 

20 

(2,5) (2,5) 
 

16 

(1,2,3) (3,2,1) 
 

45 

(1,2,4) (1,2,4) 
 

40 

 
The Solution 13 is optimal 

   

n=4 (P1,P2,…P4)=(100,10,15,27) 

(d1,d2….d4)=(2,1,2,1) 

 
Feasible solution 

 
Processing Sequence 

 
Value 

(1,2) (2,1) 110 
 

(1,3) (1,3) 115 
 

(1,4) (4,1) 127 
 

(2,3) (9,3) 25 
 

(2,4) (4,2) 37 
 

(3,4) (4,3) 42 
 

(1) (1) 100 
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(2) (2) 10 

(3) (3) 15 

(4) (4) 27 
 

The solution 3 is optimal. 2.4.MINIMUM 

COST SPANNING TREE 

Let G(V,E) be an undirected connected graph with vertices ‘v’ and edge ‘E’. A 

sub-graph t=(V,E’) of the G is a Spanning tree of G iff ‘t’ is a tree.3 

The problem is to generate a graph G’= (V,E) where ‘E’ is the subset of E,G’ is a 

Minimum spanning tree. 

Each and every edge will contain the given non-negative length .connect all the nodes 

with edge present in set E’ and weight has to be minimum. 

NOTE: 

We have to visit all the nodes. 
 

The subset tree (i.e) any connected graph with ‘N’ vertices must have at least N-1 

edges and also it does not form a cycle. 

Definition: 
 

A spanning tree of a graph is an undirected tree consisting of only those edge that are 

necessary to connect all the vertices in the original graph. 

A Spanning tree has a property that for any pair of vertices there exist only one path 

between them and the insertion of an edge to a spanning tree form a unique cycle. 

Application of the spanning tree: 

1. Analysis of electrical circuit. 

2. Shortest route problems. 

 METHODS OFMINIMUM COST SPANNING TREE: 
 

The cost of a spanning tree is the sum of cost of the edges in that trees. There are 

2 method to determine a minimum cost spanning tree are 

 

1. Kruskal’s Algorithm 

2. Prom’s Algorithm. 
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 KRUSKAL’S ALGORITHM: 

 

 
In kruskal's algorithm the selection function chooses edges in increasing order of 

length without worrying too much about their connection to previously chosen edges, 

except that never to form a cycle. The result is a forest of trees that grows until all the 

trees in a forest (all the components) merge in a single tree. 

 
In this algorithm, a minimum cost-spanning tree ‘T’ is built edge by edge. Edge 

are considered for inclusion in ‘T’ in increasing order of their cost. 

An edge is included in ‘T’ if it doesn’t form a cycle with edge already in T. 
 

To find the minimum cost spanning tree the edge are inserted to tree in increasing order 

of their cost 

Algorithm: 

Algorithm kruskal(E,cost,n,t) 

//E set of edges in G has ‘n’ vertices. 

//cost[u,v] cost of edge (u,v).t set of edge in minimum cost spanning tree 

// the first cost is returned. 

{ 
 

for i=1 to n do parent[I]=-1; 

I=0;mincost=0.0; While((I<n-1)and (heap 

not empty)) do 

{ 

j=find(n); 

k=find(v); 

if(j not equal k) than 

{ 

i=i+1 

t[i,1]=u; 

t[i,2]=v; 



Design and Analysis of Algorithms 41 Dept.of CSE, VEMU, P.KOTHAKOTA.  

mincost=mincost+cost[u,v]; 

union(j,k); 

} 
 

} 

if(i notequal n-1) then write(“No spanning tree”) else 

return minimum cost; 

} 

Analysis 
 

14. The time complexity of minimum cost spanning tree algorithm in worst case 

is O(|E|log|E|), 

where E is the edge set of G. 

 

 
Example: Step by Step operation of Kurskal algorithm. 

 

 

Step 1. In the graph, the Edge(g, h) is shortest. Either vertex g or vertex h could be 

representative. Lets choose vertex g arbitrarily. 

Step 2. The edge (c, i) creates the second tree. Choose vertex c as representative for 

second tree. 

 

Step 3. Edge (g, g) is the next shortest edge. Add this edge and choose vertex g as 

representative. 
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Step 4. Edge (a, b) creates a third tree. 

Step 5. Add edge (c, f) and merge two trees. Vertex c is chosen as the 

representative. 

 

Step 6. Edge (g, i) is the next next cheapest, but if we add this edge a cycle would be 

created. Vertex c is the representative of both. 

Step 7. Instead, add edge (c, d). 

 

Step 8. If we add edge (h, i), edge(h, i) would make a cycle. 
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Step 9. Instead of adding edge (h, i) add edge (a, h). 

Step 10. Again, if we add edge (b, c), it would create a cycle. Add edge (d, e) 

instead to complete the spanning tree. In this spanning tree all trees joined and 

vertex c is a sole representative. 

 
 
 
 

 PRIM'S ALGORITHM 

Start from an arbitrary vertex (root). At each stage, add a new branch (edge) to the tree 

already constructed; the algorithm halts when all the vertices in the graph have been 

reached. 

Algorithm prims(e,cost,n,t) 
{ 

Let (k,l) be an edge of minimum cost in E; 

Mincost :=cost[k,l]; 

T[1,1]:=k; t[1,2]:=l; 

For I:=1 to n do 
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If (cost[i,l]<cost[i,k]) then near[i]:=l; 

Else near[i]:=k; 

Near[k]:=near[l]:=0; 

For i:=2 to n-1 do 

{ 
 

Let j be an index such that near[j]≠0 and 

Cost[j,near[j]] is minimum; 

T[i,1]:=j; t[i,2]:=near[j]; 

Mincost:=mincost+ Cost[j,near[j]]; 

Near[j]:=0; 

For k:=0 to n do 

If near((near[k]≠0) and (Cost[k,near[k]]>cost[k,j])) then 

Near[k]:=j; 

} 
 

Return mincost; 

} 

15. The prims algorithm will start with a tree that includes only a minimum cost edge 

of G. 

16. Then, edges are added to the tree one by one. the next edge (i,j) to be added in 

such that I is a vertex included in the tree, j is a vertex not yet included, and 

cost of (i,j), cost[i,j] is minimum among all the edges. 

 

17. The working of prims will be explained by following diagram Step 

1: Step 2: 

Step 3: Step 4: 
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Step 5: Step 6: 

 
 

 SINGLE-SOURCE SHORTEST PATH: 

Graphs can be used to represent the highway structure of a state or country with 

vertices representing cities and edges representing sections of highway. The edges can 

then be assigned weights which may be either the distance between the two cities 

connected by the edge or the average time to drive along that section of highway. A 

motorist wishing to drive from city A to B would be interested in answers to the following 

questions: 

 

 
o Is there a path from A to B? 

o If there is more than one path from A to B? Which is the shortest 

path? 

 

 
The problems defined by these questions are special case of the path problem we study 

in this section. The length of a path is now defined to be the sum of the weights of the 

edges on that path. The starting vertex of the 
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path is referred to as the source and the last vertex the destination. The graphs are 

digraphs representing streets. Consider a digraph G=(V,E), with the distance to be 

traveled as weights on the edges. The problem is to determine the shortest path from v0 

to all the remaining vertices of G. It is assumed that all the weights associated with the 

edges are positive. The shortest path between v0 and some other node v is an ordering 

among a subset of the edges. Hence this problem fits the ordering paradigm. 

Example: 

Consider the digraph of fig 7- 1. Let the numbers on the edges be the costs of travelling 

along that route. If a person is interested travel from v1 to v2, then he encounters many 

paths. Some of them are 

o v1 v2 = 50 units 

o v1 v3 v4 v2 = 10+15+20=45 units 

o v1 v5 v4 v2 = 45+30+20= 95 units 

o v1 v3 v4 v5  v4 v2 = 10+15+35+30+20=110 units 

 
The cheapest path among these is the path along v1 v3 v4 v2. The cost of the 

path is 10+15+20 = 45 units. Even though there are three edges on this path, it is 

cheaper than travelling along the path connecting v1 and v2 directly i.e., the path v1 v2 

that costs 50 units. One can also notice that, it is not possible to travel to v6 from any 

other node. 

To formulate a greedy based algorithm to generate the cheapest paths, we must 

conceive a multistage solution to the problem and also of an optimization measure. One 

possibility is to build the shortest paths one by one. As an optimization measure we can 

use the sum of the lengths of all paths so far generated. For this measure to be 

minimized, each individual path must be of minimum length. If we have already 

constructed i shortest paths, then using this optimization measure, the next path to be 

constructed should be the next shortest minimum length path. The greedy way to 

generate these paths in non-decreasing order of path length. First, a shortest path to the 

nearest vertex is generated. Then a shortest path to the second nearest vertex is 

generated, and so on. 

 

A much simpler method would be to solve it using matrix representation. 

The steps that should be followed is as follows, 

Step 1: find the adjacency matrix for the given graph. The adjacency matrix for fig 

 is given below 



 

 
 V1 V2 V3 V4 V5 V6 

V1 - 50 10 Inf 45 Inf 

V2 Inf - 15 Inf 10 Inf 

V3 20 Inf - 15 inf Inf 

V4 Inf 20 Inf - 35 Inf 

V5 Inf Inf Inf 30 - Inf 

V6 
 

Inf 
 

Inf 
 

Inf 
 

3 
 

Inf 
 

- 

 

 

Step 2: consider v1 to be the source and choose the minimum entry in the row v1. In the 

above table the minimum in row v1 is 10. 

 

 
Step 3: find out the column in which the minimum is present, for the above 

example it is column v3. Hence, this is the node that has to be next visited. 

 

 
Step 4: compute a matrix by eliminating v1 and v3 columns. Initially retain only row 

v1. The second row is computed by adding 10 to all values of row v3. 

 

The resulting matrix is 
 
 
 
 

 V2 V4 V5 V6 

V1 Vw 50 Inf 45 Inf 

V1 V3 Vw 10+inf 10+15 10+inf 10+inf 

Minimum 
 

50 
 

25 
 

45 
 

inf 
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Step 5: find the minimum in each column. Now select the minimum from the resulting 

row. In the above example the minimum is 25. Repeat step 3 followed by step 4 till all 

vertices are covered or single column is left. 

The solution for the fig 7.1 can be continued as follows 
 
 
 
 

 V2 V5   V6 

V1 Vw 50 45 
  

Inf 

V1 V3 V4 25+20 
 

25+35 
  

25+inf 

Vw      

Minimum 
 

45 
 

45 

   

inf 

      

 
V5 V6 

   

V1 Vw 45 Inf 
   

V1   V3 V4   V2 45+10 45+inf 
  

Vw      

Minimum 45 
 

Inf 

   

   
   

  
V6 

   

V1 Vw 
 

Inf 
   

V1 V3 V4   V2 V5 
 

45+inf 
   

Vw      

Minimum 
  

inf 
   

 

Finally the cheapest path from v1 to all other vertices is given by V1 V3 V4 V2 V5. 
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 DYNAMIC PROGRAMING GENERAL METHOD: 
 

1. The idea of dynamic programming is thus quit simple: avoid calculating the same 

thing twice, usually by keeping a table of known result that fills up a sub 

instances are solved. 

2. Divide and conquer is a top-down method. 
 

3. When a problem is solved by divide and conquer, we immediately attack the 

complete instance, which we then divide into smaller and smaller sub- instances 

as the algorithm progresses. 

4. Dynamic programming on the other hand is a bottom-up technique. 

5. We usually start with the smallest and hence the simplest sub-instances. 

 

6. By combining their solutions, we obtain the answers to sub-instances of 

increasing size, until finally we arrive at the solution of the original instances. 

7. The essential difference between the greedy method and dynamic programming 

is that the greedy method only one decision sequence is ever generated. 

8. In dynamic programming, many decision sequences may be generated. 

However, sequences containing sub-optimal sub-sequences can not be optimal 

and so will not be generated. 

 ALL PAIR SHORTEST PATH 

Let G=<N,A> be a directed graph ’N’ is a set of nodes and ‘A’ is the set of edges. 

 

1. Each edge has an associated non-negative length. 
 

2. We want to calculate the length of the shortest path between each pair of nodes. 

 

3. Suppose the nodes of G are numbered from 1 to n, so N={1,2,...N},and suppose G 

matrix L gives the length of each edge, with L(i,j)=0 for i=1,2...n,L(i,j)>=for all i & j, and 

L(i,j)=infinity, if the edge (i,j) does not exist. 

 

4. The principle of optimality applies: if k is the node on the shortest path from i to j then 

the part of the path from i to k and the part from k to j must also be optimal, that is 

shorter. 

5. First, create a cost adjacency matrix for the given graph. 

DYNAMIC PROGRAMMING 
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6. Copy the above matrix-to-matrix D, which will give the direct distance between 

nodes. 

7. We have to perform N iteration after iteration k.the matrix D will give you the 

distance between nodes with only (1,2...,k)as intermediate nodes. 

8. At the iteration k, we have to check for each pair of nodes (i,j) whether or not there 

exists a path from i to j passing through node k. 

COST ADJACENCY MATRIX: 
 
 
 

D0=L=   05 

500 15 5 
  

30 
 

0 15 

15 
 

5 0 
 
 
 
 
 

1 7 5 

2 72 21--24 
 

3 3 

 
1112 - - 

 

 
- 32 - - 

 

4 4 1 41 – 43 - 
 

 

vertex 1: 
 
 
 

7 5   11 12 - - 

7 12 
 

2 
 

21 212 - 24 

3 
   

- 32 - - 

4 9 1 
 

41 412 43 – 
 

 

vertex 2: 
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7 5  7  11 12 - 124 

7 12 
  

2 
 

21 212 - 24 

10 3 
 

5 321 32 - 324 

4 9 1 11 
 

41 412 43 4124 
 

 

vertex 3: 
 
 
 

7 5 
 

7 
 

11 12 - 124 

7 12 
 

2 
 

21 212 - 24 

10 3  5  321 32 - 324 

4 4 1 6 
 

41 432 43 4324 
 

 

vertex 4: 
 
 
 

7 5 8 7 
 

11 12 1243 124 

6 6 3 2 
 

241 2432 243 24 

9 3 6 5  3241 32 3243 324 

4 4 1 6 
 

41 432 43 4324 
 

 

1. At 0th iteration it nil give you the direct distances between any 2 nodes 
 
 
 

 

D0=0 5 

50015 5 
 

30 015  

15 5 0 
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At 1st iteration we have to check the each pair(i,j) whether there is a path through node 

1.if so we have to check whether it is minimum than the previous value and if I is so 
than the distance through 1 is the value of d1(i,j).at the same time we have to solve the 
intermediate node in the matrix position p(i,j). 

 
 
 
 

 
 
 

 
D1= 

 

0 5 

50 0   15   5 

3035 015 

1520 5 0 

 

 
p[3,2]= 1 

p[4,2]= 1 

 
 
 
 
 
 
 
 
 
 
 
 

 

15 
 
 

 

15 

 

 
Fig: floyd’s algorithm and work 

 

 
3. likewise we have to find the value for N iteration (ie) for N nodes. 

15 

30 

5 

5 50 5 
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0 

  
5 

 
20 

 
10 

 
P[1,3] = 2 

D2= 50 0 15 5 P[1,4] = 2 

30 35 0 15 
 

15 20 5 0 
 

 
 
 
 

 

 
0 

 
5 

 
20 

 
10 

 

D3= 45 0 15 5 P[2,1]=3 

30 35 0 15 
 

15 20 5 0 
 

 
 
 
 
 
 
 
 
 

 
0 5 15 10 

 

 
20 0 10 5 P[1,3]=4 

D4= 30 35 0 15 P[2,3]=4 

 
15 20 5 0 

 

 

4. D4 will give the shortest distance between any pair of nodes. 
 

5. If you want the exact path then we have to refer the matrix p.The matrix will be, 

 

 

0042 

3040 

P= 0100 

0100 

 

 
0 direct path 
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Since,p[1,3]=4,the shortest path from 1 to3 passes through 4. 
 

Looking now at p[1,4]&p[4,3] we discover that between 1 & 4, we have to go to 

node 2 but that from 4 to 3 we proceed directly. 

Finally we see the trips from 1 to 2, & from 2 to 4, are also direct. The 

shortest path from 1 to 3 is 1,2,4,3. 

ALGORITHM : 

Function Floyd (L[1..r,1..r]):array[1..n,1..n] 

array D[1..n,1..n] 

D = L 

For k = 1 to n do 

For i = 1 to n do 

For j = 1 to n do 

D [ i , j ] = min (D[ i, j ], D[ i, k ] + D[ k, j ] 

Return D 

ANALYSIS: 

This algorithm takes a time of (n3) 

 MULTISTAGE GRAPH 

A multistage graph G = (V,E) is a directed graph in which the vertices are 

portioned into K > = 2 disjoint sets Vi, 1 <= i<= k. 

In addition, if < u,v > is an edge in E, then u < = Vi and V Vi+1 for some i, 1<= i 

< k. 

If there will be only one vertex, then the sets Vi and Vk are such that [Vi]=[Vk] 

= 1. 

Let ‘s’ and ‘t’ be the source and destination respectively. 
 

The cost of a path from source (s) to destination (t) is the sum of the costs of the 

edger on the path. 

The MULTISTAGE GRAPH problem is to find a minimum cost path from ‘s’ to ‘t’. 

Each set Vi defines a stage in the graph. Every path from ‘s’ to ‘t’ starts in 

stage-1, goes to stage-2 then to stage-3, then to stage-4, and so on, and 

terminates in stage-k. 
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This MULISTAGE GRAPH problem can be solved in 2 ways. o 
 

Forward Method. 

o Backward Method. 

 

 
 FORWARD METHOD 

Assume that there are ‘k’ stages in a graph. 

In this FORWARD approach, we will find out the cost of each and every node 

starling from the ‘k’ th stage to the 1st stage. 

We will find out the path (i.e.) minimum cost path from source to the 

destination (ie) [ Stage-1 to Stage-k ]. 

PROCEDURE: 

V1 V2 V3 V4 V5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

t 

s 

4 6 

2 2 

5 4 

9 1 

4 

7 3 2 

7 

3 

11 5 5 
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Cost (i,j) = min {C (j,l) + Cost (i+1,l) } 

l Vi + 1 

(j,l) E 

2 
 
 
 
 
 
 
 
 

 

1. Maintain a cost matrix cost (n) which stores the distance from any vertex to the 

destination. 

2. If a vertex is having more than one path, then we have to choose the minimum 

distance path and the intermediate vertex, which gives the minimum distance 

path, will be stored in the distance array ‘D’. 

3. In this way we will find out the minimum cost path from each and every 

vertex. 

4. Finally cost(1) will give the shortest distance from source to destination. 

 

5. For finding the path, start from vertex-1 then the distance array D(1) will give the 

minimum cost neighbour vertex which in turn give the next nearest vertex and 

proceed in this way till we reach the Destination. 

 

6. For a ‘k’ stage graph, there will be ‘k’ vertex in the path. 
 

7. In the above graph V1…V5 represent the stages. This 5 stage graph can be 

solved by using forward approach as follows, 
 

STEPS: - DESTINATION, D 

Cost (12)=0 D (12)=0 

Cost (11)=5 D (11)=12 

Cost (10)=2 D (10)=12 

Cost ( 9)=4 D ( 9)=12 

1. For forward approach, 

11 6 

8 
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Cost(8) = min {C (8,10) + Cost (10), C (8,11) + Cost (11) } 

= min (5 + 2, 6 + 5) 

= min (7,11) 

= 7 

cost(8) =7 =>D(8)=10 

cost(7) = min(c (7,9)+ cost(9),c (7,10)+ cost(10)) 

(4+4,3+2) 

= min(8,5) 

= 5 

cost(7) = 5 =>D(7) = 10 

cost(6) = min (c (6,9) + cost(9),c (6,10) +cost(10)) 

= min(6+4 , 5 +2) 

= min(10,7) 

= 7 

cost(6) = 7 =>D(6) = 10 

cost(5) = min (c (5,7) + cost(7),c (5,8) +cost(8)) 

= min(11+5 , 8 +7) 

= min(16,15) 

= 15 

cost(5) = 15 =>D(5) = 18 

cost(4) = min (c (4,8) + cost(8)) 

= min(11+7) 

= 18 

cost(4) = 18 =>D(4) = 8 

cost(3) = min (c (3,6) + cost(6),c (3,7) +cost(7)) 

= min(2+7 , 7 +5) 

= min(9,12) 

= 9 
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cost(3) = 9 =>D(3) = 6  

cost(2) = min (c (2,6) + cost(6),c (2,7) +cost(7) ,c (2,8) +cost(8)) 

 
= min(4+7 , 2+5 , 1+7 ) 

 

 
= min(11,7,8) 

 

 
= 7 

 

cost(2) = 7 =>D(2) = 7 
 

cost(1) = min (c (1,2)+cost(2) ,c (1,3)+cost(3) ,c (1,4)+cost(4) 

,c(1,5)+cost(5)) 

= min(9+7 , 7 +9 , 3+18 , 2+15) 

= min(16,16,21,17) 

= 16 

cost(1) = 16 =>D(1) = 2 

The path through which you have to find the shortest 

distance. 

 

 
(i.e.) 

Start from vertex - 2 

D(1) = 2 

D(2) = 7 

D(7) =10 
 

D (10) = 12    

So, the minimum –cost path is, 

9 2 3 2 

 

The cost is 9+2+3+2+=16 

ALGORITHM: FORWARD METHOD 

Algorithm FGraph (G,k,n,p) 

// The I/p is a k-stage graph G=(V,E) with ‘n’ vertex. 

// Indexed in order of stages E is a set of edges. 
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// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path. 

{ 
 

cost[n]=0.0; 

for j=n-1 to 1 step-1 do 

{ 

//compute cost[j], 

// let ‘r’ be the vertex such that <j,r> is an edge of ‘G’ & 

// c[j,r]+cost[r] is minimum. 

 

 
cost[j] = c[j+r] + cost[r]; 

d[j] =r; 

} 
 

// find a minimum cost path. 
 

 

P[1]=1; 

P[k]=n; 

For j=2 to k-1 do 

P[j]=d[p[j-1]]; 

} 
 
 
 

ANALYSIS: 

The time complexity of this forward method is O( V + E ) 

2.8.2.BACKWARD METHOD 

if there one ‘K’ stages in a graph using back ward approach. we will find out 

the cost of each & every vertex starting from 1st
 

stage to the kth stage. 

We will find out the minimum cost path from destination to source (ie)[from stage 

k to stage 1] 
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PROCEDURE: 

It is similar to forward approach, but differs only in two or three ways. 
 

Maintain a cost matrix to store the cost of every vertices and a distance 

matrix to store the minimum distance vertex. 

Find out the cost of each and every vertex starting from vertex 1 up to 

vertex k. 

To find out the path star from vertex ‘k’, then the distance array D (k) will give the 

minimum cost neighbor vertex which in turn gives the next nearest neighbor vertex and 

proceed till we reach the destination. 

STEP: 

Cost(1) = 0 => D(1)=0 

Cost(2) = 9 => D(2)=1 

Cost(3) = 7 => D(3)=1 

Cost(4) = 3 => D(4)=1 

Cost(5) = 2 => D(5)=1 

Cost(6) =min(c (2,6) + cost(2),c (3,6) + cost(3)) 

=min(13,9) 

cost(6) = 9 =>D(6)=3 

Cost(7) =min(c (3,7) + cost(3),c (5,7) + cost(5) ,c (2,7) + cost(2)) 

=min(14,13,11) 

cost(7) = 11 =>D(7)=2 

Cost(8) =min(c (2,8) + cost(2),c (4,8) + cost(4) ,c (5,8) +cost(5)) 

=min(10,14,10) 

cost(8) = 10 =>D(8)=2 

Cost(9) =min(c (6,9) + cost(6),c (7,9) + cost(7)) 

=min(15,15) 

cost(9) = 15 =>D(9)=6 

Cost(10)=min(c(6,10)+cost(6),c(7,10)+cost(7)),c (8,10)+cost(8)) 

=min(14,14,15) 

cost(10)= 14 =>D(10)=6 
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17 32 65 102
 12 

Cost(11) =min(c (8,11) + cost(8)) 

cost(11) = 16 =>D(11)=8 

cost(12)=min(c(9,12)+cost(9),c(10,12)+cost(10),c(11,12)+cost(11)) 

=min(19,16,21) 

cost(12) = 16 =>D(12)=10 

PATH: 

Start from vertex-12 

D(12) = 10 

D(10) = 6 

D(6) = 3 

D(3) = 1 

So the minimum cost path is, 
 

 

 

The cost is 16. 

ALGORITHM : BACKWARD METHOD 

Algorithm BGraph (G,k,n,p) 

// The I/p is a k-stage graph G=(V,E) with ‘n’ vertex. 

// Indexed in order of stages E is a set of edges. 

// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path. 

{ 
 

bcost[1]=0.0; for 

j=2 to n do 

{ 

//compute bcost[j], 

// let ‘r’ be the vertex such that <r,j> is an edge of ‘G’ & 

// bcost[r]+c[r,j] is minimum. 
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bcost[j] = bcost[r] + c[r,j]; 

d[j] =r; 

} 

// find a minimum cost path. 
 
 
 

P[1]=1; 

P[k]=n; 

For j= k-1 to 2 do 

P[j]=d[p[j+1]]; 

} 
 

 TRAVELLING SALESMAN PROBLEM 

Let G(V,E) be a directed graph with edge cost cij is defined such that cij >0 for all i 

and j and cij = ,if <i,j> E. 

Let V =n and assume n>1. 

The traveling salesman problem is to find a tour of minimum cost. A tour of G 

is a directed cycle that include every vertex in V. 

The cost of the tour is the sum of cost of the edges on the tour. 
 

The tour is the shortest path that starts and ends at the same vertex (ie) 1. 

 

APPLICATION : 
 

Suppose we have to route a postal van to pick up mail from the mail boxes 

located at ‘n’ different sites. 

An n+1 vertex graph can be used to represent the situation. 
 

One vertex represent the post office from which the postal van starts and 

return. 

Edge <i,j> is assigned a cost equal to the distance from site ‘i’ to site ‘j’. 

 

the route taken by the postal van is a tour and we are finding a tour of minimum 

length. 

every tour consists of an edge <1,k> for some k V-{} and a path from vertex k to 

vertex 1. 
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the path from vertex k to vertex 1 goes through each vertex in V-{1,k} 

exactly once. 

the function which is used to find the path is 

g(1,V-{1}) = min{ cij + g(j,s-{j})} 

g(i,s) be the length of a shortest path starting at vertex i, going 

through all vertices in S,and terminating at vertex 1. 

the function g(1,v-{1}) is the length of an optimal tour. 

 

 
1. Find g(i, ) =ci1, 1<=i<n, hence we can use equation(2) to obtain g(i,s) for all s to 

size 1. 

2. That we have to start with s=1,(ie) there will be only one vertex in set ‘s’. 

 

3. Then s=2, and we have to proceed until |s| <n-1. 

4. for example consider the graph. 
 
 
 
 
 
 
 
 

 

20 8 

8 6 
 
 
 

7 
 
 
 

Cost matrix 

0101520 

5 0 910 

6 13012 

8890 

10 

15 

10 

15 

913 
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g(i,s) set of nodes/vertex have to visited. 

 

starting position 

g(i,s) =min{cij +g(j,s-{j}) 
 

STEP 1: 

g(1,{2,3,4})=min{c12+g(2{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3})} 

min{10+25,15+25,20+23} 

min{35,35,43} 

=35 

 

 
STEP 2: 

g(2,{3,4}) = min{c23+g(3{4}),c24+g(4,{3})} 
 

min{9+20,10+15} 

min{29,25} 

=25 

g(3,{2,4}) =min{c32+g(2{4}),c34+g(4,{2})} 
 

min{13+18,12+13} 

min{31,25} 

=25 

 

 
g(4,{2,3}) = min{c42+g(2{3}),c43+g(3,{2})} 

 

 
 
 
 

 
STEP 3: 

min{8+15,9+18} 

min{23,27} 

=23 

1. g(3,{4}) = min{c34 +g{4, }} 12+8 

 
=20 



Design and Analysis of Algorithms  

2. g(4,{3}) = min{c43 +g{3, }} 9+6 

=15 
 

3. g(2,{4}) = min{c24 +g{4, }} 10+8 

 
=18 

 

 
4. g(4,{2}) = min{c42 +g{2, }} 8+5 

=13 

5. g(2,{3}) = min{c23 +g{3, }} 

9+6=15 

6. g(3,{2}) = min{c32 +g{2, }} 
 

13+5=18 

STEP 4: 

g{4, } =c41 = 8 

g{3, } =c31 = 6 

g{2, } =c21 = 5 

s = 0. 
 
 
 

i =1 to n. 

g(1, ) = c11 => 0 

g(2, ) = c21 => 5 

g(3, ) = c31 => 6 

g(4, ) = c41 => 8 

 
 

s = 1 
 

i =2 to 4 

g(2,{3}) = c23 + g(3, ) 

= 9+6 =15 
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g(2,{4}) = c24 + g(4, ) 
 

= 10+8 =18 

 

 
g(3,{2}) = c32 + g(2, ) 

 
= 13+5 =18 

 

 
g(3,{4}) = c34 + g(4, ) 

 

= 12+8 =20 

 

 
g(4,{2}) = c42 + g(2, ) 

 

= 8+5 =13 

 

 
g(4,{3}) = c43 + g(3, ) 

 
= 9+6 =15 

 
 
 

s = 2 
 

 

i 1, 1 s and i s. 

 

 
g(2,{3,4}) = min{c23+g(3{4}),c24+g(4,{3})} 

 
min{9+20,10+15} 

min{29,25} 

=25 

 

 
g(3,{2,4}) =min{c32+g(2{4}),c34+g(4,{2})} 

 
min{13+18,12+13} 

min{31,25} 

=25 
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g(4,{2,3}) = min{c42+g(2{3}),c43+g(3,{2})} 
 

min{8+15,9+18} 

min{23,27} 

=23 
 
 
 

s = 3 
 

 

g(1,{2,3,4})=min{c12+g(2{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3})} 

min{10+25,15+25,20+23} 

min{35,35,43} 

=35 

 

 
optimal cost is 35 

 

 
the shortest path is, 

 

 
g(1,{2,3,4}) = c12 + g(2,{3,4}) => 1->2 

 

 
g(2,{3,4}) = c24 + g(4,{3}) => 1->2->4 

 

 
g(4,{3}) = c43 + g(3{ }) => 1->2->4->3->1 

 

 
so the optimal tour is 1 2 4 3 1 

 

 0/1 KNAPSACK PROBLEM: 

 

 
1. This problem is similar to ordinary knapsack problem but we may not take a 

fraction of an object. 
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2. We are given ‘ N ‘ object with weight Wi and profits Pi where I varies from l to N 

and also a knapsack with capacity ‘ M ‘. 

 

 
3. The problem is, we have to fill the bag with the help of ‘ N ‘ objects and the 

resulting profit has to be maximum. 

 

4. Formally, the problem can be started as, maximize Xi Pi i=l- 

n 

subject to Xi Wi L M 
 

i=l- n 

 

 
5. Where Xi are constraints on the solution Xi {0,1}. (u) Xi is required to be 0 or 

1. if the object is selected then the unit in 1. if the object is rejected than the unit is 

0. That is why it is called as 0/1, knapsack problem. 

 
 

 
6. To solve the problem by dynamic programming we up a table T[1…N, 0…M] (ic) 

the size is N. where ‘N’ is the no. of objects and column starts with ‘O’ to 

capacity (ic) ‘M’. 

 

 
7. In the table T[i,j] will be the maximum valve of the objects i varies from 1 to n and 

j varies from O to M. 

 

 
RULES TO FILL THE TABLE:- 

 

 
1. If i=l and j < w(i) then T(i,j) =o, (ic) o pre is filled in the table. 

 

 
2. If i=l and j w (i) then T (i,j) = p(i), the cell is filled with the profit p[i], since only 

one object can be selected to the maximum. 
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3. If i>l and j < w(i) then T(i,l) = T (i-l,j) the cell is filled the profit of previous 

object since it is not possible with the current object. 

 

 
4. If i>l and j w(i) then T (i,j) = {f(i) +T(i-l,j-w(i)),. since only ‘l’ unit can be selected 

to the maximum. If is the current profit + profit of the previous object to fill the 

remaining capacity of the bag. 

 
 

 
5. After the table is generated, it will give details the profit. 

 

 
ES TO GET THE COMBINATION OF OBJECT: 

 

 
Start with the last position of i and j, T[i,j], if T[i,j] = T[i-l,j] then no object of ‘i’ is 

required so move up to T[i-l,j]. 

 

 
After moved, we have to check if, T[i,j]=T[i-l,j-w(i)]+ p[I], if it is equal then one 

unit of object ‘i’ is selected and move up to the position T[i-l,j-w(i)] 

 
 

 
Repeat the same process until we reach T[i,o], then there will be nothing to fill 

the bag stop the process. 

 

 
Time is 0(nw) is necessary to construct the table T. 

 

 
Consider a Example, 

 

 
M=6, 

N = 3 

W1=2,W2=3,W3=4 

P1=1,P2=2,P3=5 
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i 1 to N 

j 0 to 6 

 

 
i=l, j=o (ic) i=l & j < w(i) 

 

 
o<2 T1,o =0 

 

 
i=l, j=l (ic) i=l & j < w(i) 

 

 
l<2 T1,1 =0 (Here j is equal to w(i) P(i) 

 

 
i=l, j=2 

2 o,= T1,2 = l. 

 

 
i=l, j=3 

3>2,= T1,3 = l. 

 

 
i=l, j=4 

4>2,= T1,4 = l. 

 

 
i=l, j=5 

5>2,= T1,5 = l. 

 

 
i=l, j=6 

6>2,= T1,6 = l. 

 

 
=> i=2, j=o (ic) i>l,j<w(i) 

o<3= T(2,0) = T(i-l,j) = T(2) 
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T 2,0 =0 

 

 
i=2, j=1 

l<3= T(2,1) = T(i-l) 

T 2,1 =0 
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1 

2 3 

4 

 
 

BASIC SEARCH AND TRAVERSAL TECHNIQUE: 

3.1.DEFINING GRAPH: 

A graphs g consists of a set V of vertices (nodes) and a set E of edges (arcs) . 

We write G=(V,E). V is a finite and non-empty set of vertices. E is a set of pair of 

vertices; these pairs are called as edges . Therefore, 

V(G).read as V of G, is a set of vertices and E(G),read as E of G is a set of edges. An 

edge e=(v, w) is a pair of vertices v and w, and to be incident with v and w. 

 

A graph can be pictorially represented as follows, 

 

 
 
 
 
 
 
 
 
 

FIG: Graph G 

 

 
We have numbered the graph as 1,2,3,4. Therefore, V(G)=(1,2,3,4) and E(G) = 

 

{(1,2),(1,3),(1,4),(2,3),(2,4)}. 

 

 
BASIC TERMINOLGIES OF GRAPH: 

 

 
UNDIRECTED GRAPH: 

 

An undirected graph is that in which, the pair of vertices 

representing the edges is unordered. 

UNIT-III 
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DIRECTED GRAPH: 

 

 
An directed graph is that in which, each edge is an ordered pair of 

vertices, (i.e.) each edge is represented by a directed pair. It is also referred to as 

digraph. 

 

 
DIRECTED GRAPH 

 

 

COMPLETE GRAPH: 
 

An n vertex undirected graph with exactly n(n-1)/2 edges is said to 

be complete graph. The graph G is said to be complete graph . 

 

 
 TECHNIQUES FOR GRAPHS: 

 

 
The fundamental problem concerning graphs is the reach-ability problem. 

 

In it simplest from it requires us to determine whether there exist a path in the 

given graph, G +(V,E) such that this path starts at vertex ‘v’ and ends at vertex 

‘u’. 

A more general form is to determine for a given starting vertex v6 V all 

vertex ‘u’ such that there is a path from if it u. 

This problem can be solved by starting at vertex ‘v’ and systematically 

searching the graph ‘G’ for vertex that can be reached from ‘v’. 

We describe 2 search methods for this. 

 

 
o Breadth first Search and Traversal. 

o Depth first Search and Traversal. 
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 BREADTH FIRST SEARCH AND TRAVERSAL: 

 

 
Breadth first search: 

 

 
In Breadth first search we start at vertex v and mark it as having been reached. The 

vertex v at this time is said to be unexplored. A vertex is said to have been explored by 

an algorithm when the algorithm has visited all vertices adjacent from it. All unvisited 

vertices adjacent from v are visited next. There are new unexplored vertices. Vertex v 

has now been explored. The newly visited vertices have not been explored and are put 

onto the end of the list of unexplored vertices. The first vertex on this list is the next to be 

explored. Exploration continues until no unexplored vertex is left. The list of unexplored 

vertices acts as a queue and can be represented using any of the standard queue 

representations. 

 
 

 
In Breadth First Search we start at a vertex ‘v’ and mark it as having been 

reached (visited). 

The vertex ‘v’ is at this time said to be unexplored. 
 

A vertex is said to have been explored by an algorithm when the algorithm has 

visited all vertices adjust from it. 

All unvisited vertices adjust from ‘v’ are visited next. These are new 

unexplored vertices. 

Vertex ‘v’ has now been explored. The newly visit vertices have not been 

explored and are put on the end of a list of unexplored vertices. 

The first vertex on this list in the next to be explored. Exploration continues until 

no unexplored vertex is left. 

The list of unexplored vertices operates as a queue and can be represented using 

any of the start queue representation. 

 

 
ALGORITHM: 

 

 
Algorithm BPS (v) 
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// A breadth first search of ‘G’ is carried out. 

// beginning at vertex-v; For any node i, visit. 

// if ‘i’ has already been visited. The graph ‘v’ 

// and array visited [] are global; visited [] 

// initialized to zero. 

{ y=v; // q is a queue of unexplored 1visited (v)= 1 

repeat 

{ for all vertices ‘w’ adjacent from u do { if 

(visited[w]=0) then 

{Add w to q; 

visited[w]=1 

} 
 

} 

if q is empty then return;// No delete u from q; } 

until (false) 

} 

 

 
algrothim : breadth first traversal 

algorithm BFT(G,n) 

 

{ 
 
 
 

for i= 1 to n do 

visited[i] =0; 

for i =1 to n do 

if (visited[i]=0)then BFS(i) 

} 
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BACKTRACKING 

here the time and space required by BFT on an n-vertex e-edge graph one O(n+e) and 

O(n) resp if adjacency list is used.if adjancey matrix is used then the bounds are O(n2) 

and O(n) resp 

 
 
 

 
 Depth first search 

 

 
A depth first search of a graph differs from a breadth first search in that the exploration of 

a vertex v is suspended as soon as a new vertex is reached. At this time the exploration 

of the new vertex u begins. When this new vertex has been explored, the exploration of 

u continues. The search terminates when all reached vertices have been fully explored. 

This search process is best-described recursively. 

Algorithm DFS(v) 

{ 

visited[v]=1 

for each vertex w adjacent from v do 

{ 

If (visited[w]=0)then 

DFS(w); 

} 

} 
 

 

 

 BACKTRACKING 

 

 
It is one of the most general algorithm design techniques. 

 

 
Many problems which deal with searching for a set of solutions or for a optimal 

solution satisfying some constraints can be solved using the backtracking 

formulation. 
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To apply backtracking method, tne desired solution must be expressible as an n-

tuple (x1…xn) where xi is chosen from some finite set Si. 

 
 

 
The problem is to find a vector, which maximizes or minimizes a criterion 

function P(x1….xn). 

 

 
The major advantage of this method is, once we know that a partial 

vector (x1,…xi) will not lead to an optimal solution that (mi+1 ........................ mn) 
possible test vectors may be ignored entirely. 

 

 
Many problems solved using backtracking require that all the solutions satisfy 

a complex set of constraints. 

 

 
These constraints are classified as: 

 

 
i) Explicit constraints. 

ii) Implicit constraints. 

 

 
Explicit constraints: 

 

Explicit constraints are rules that restrict each Xi to take values only from 

a given set. 

Some examples are, Xi 

0 or Si = {all non-negative real nos.} 

Xi =0 or 1 or Si={0,1}. 

Li Xi Ui or Si= {a: Li a Ui} 

 
 

All tupules that satisfy the explicit constraint define a possible solution space 

for I. 
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Implicit constraints: 
 

The implicit constraint determines which of the tuples in the 

solution space I can actually satisfy the criterion functions. 

 

 
Algorithm: 

 

 
Algorithm IBacktracking (n) 

 

// This schema describes the backtracking procedure .All solutions are 

generated in X[1:n] 

//and printed as soon as they are determined. 

{ 
 

k=1; 

While (k 0) do 
 

{ 

if (there remains all untried 

X[k] T (X[1],[2],…..X[k-1]) and Bk (X[1],…..X[k])) is true ) then 
 

{ 

if(X[1],……X[k] )is the path to the answer node) Then 

write(X[1:k]); 

k=k+1; //consider the next step. 

} 
 

else k=k-1; //consider backtracking to the previous set. 

} 
 

} 

 

 
All solutions are generated in X[1:n] and printed as soon as they are 

determined. 
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T(X[1]…..X[k-1]) is all possible values of X[k] gives that X[1], ................. X[k-1] 

have already been chosen. 

 

 
Bk(X[1] ............ X[k]) is a boundary function which determines the elements of 

X[k] which satisfies the implicit constraint. 

 

 
Certain problems which are solved using backtracking method are, 

 

 
1. Sum of subsets. 

2. Graph coloring. 

3. Hamiltonian cycle. 

4. N-Queens problem. 

 

 
 SUM OF SUBSETS: 

 

 
1) We are given ‘n’ positive numbers called weights and we have to find all 

combinations of these numbers whose sum is M. this is called sum of subsets 

problem. 

2) If we consider backtracking procedure using fixed tuple strategy , the elements 

X(i) of the solution vector is either 1 or 0 depending on if the weight W(i) is 

included or not. 

 

 
3) If the state space tree of the solution, for a node at level I, the left child 

corresponds to X(i)=1 and right to X(i)=0. 

 

 
Example: 

 

 
a. Given n=6,M=30 and W(1…6)=(5,10,12,13,15,18).We have to generate all 

possible combinations of subsets whose sum is equal to the given value 

M=30. 
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0,1,73 

b. In state space tree of the solution the rectangular node lists the values of 

s, k, r, where s is the sum of subsets,’k’ is the iteration and ‘r’ is the sum of 

elements after ‘k’ in the original set. 

 

 
c. The state space tree for the given problem is, 

 
 
 

 
S, n, r 

 

 
 
 
 

X(1)=1  x(1)=0 

5,2,68  0,2,68 

 

 
 
 
 
 
 
 
 
 

 

 

X(4)=0      x(4)=0 

 

15,5,33 

 
B 

  

5,5,33 

   

10,5,33 

 

X(5)=1 x(5)=1 

  

20,6,18 A 

 X(2)=1  x(2)=0     x(2)=1   x(2)=0 

5,3,58   5,3,58    10, 3,587   0,3,58 

 

 
X(3)=1 

 

 
x(3)=0 x(3)=1 

 

 
x(3)=0 

   

27,4,46 15,4,46 
 

17,4,46 
 

5,4,4 
  

10,4,46 
  

C 
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Ist solution is A ->1 1 0 0 1 0 

IInd solution is B ->1 0 1 1 0 0 

III rd solution is C -> 0 0 1 0 0 1 
 

 

In the state space tree, edges from level ‘i’ nodes to ‘i+1’ nodes are labeled with 

the values of Xi, which is either 0 or 1. 

 

 
The left sub tree of the root defines all subsets containing Wi. 

 

 
The right subtree of the root defines all subsets, which does not include Wi. 

 
 
 
 
 
 

 
 GENERATION OF STATE SPACE TREE: 

 

 
Maintain an array X to represent all elements in the set. 

 

 
The value of Xi indicates whether the weight Wi is included or not. 

 

 
Sum is initialized to 0 i.e., s=0. 

 

 
We have to check starting from the first node. 

 

 
Assign X(k)<- 1. 
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If S+X(k)=M then we print the subset b’coz the sum is the required output. 

 
 

 
If the above condition is not satisfied then we have to check 

S+X(k)+W(k+1)<=M. If so, we have to generate the left sub tree. It means W(t) 

can be included so the sum will be incremented and we have to check for the 

next k. 

 

 
After generating the left sub tree we have to generate the right sub tree, for this 

we have to check S+W(k+1)<=M.B’coz W(k) is omitted and W(k+1) has to be 

selected. 

 

 
Repeat the process and find all the possible combinations of the subset. 

 
 

 
Algorithm: 

 

 
Algorithm sumofsubset(s,k,r) 

{ 

//generate the left child. note s+w(k)<=M since Bk-1 is true. 

X{k]=1; 

If (S+W[k]=m) then write(X[1:k]); // there is no recursive call here as 

W[j]>0,1<=j<=n. 

Else if (S+W[k]+W[k+1]<=m) then sum of sub (S+W[k], k+1,r- W[k]); 

//generate right child and evaluate Bk. 
 

If ((S+ r- W[k]>=m)and(S+ W[k+1]<=m)) then 

{ 
 

X{k]=0; 

sum of sub (S, k+1, r- W[k]); 

} 

} 



Design and Analysis of Algorithms  

1 2 3 4 

8 7 6 
 

5 

 

 HAMILTONIAN CYCLES: 

 

 
Let G=(V,E) be a connected graph with ‘n’ vertices. A HAMILTONIAN CYCLE is 

a round trip path along ‘n’ edges of G which every vertex once and returns to its 

starting position. 

 

 
If the Hamiltonian cycle begins at some vertex V1 belongs to G and the vertex are 

visited in the order of V1,V2…….Vn+1,then the edges are in E,1<=I<=n and the 

Vi are distinct except V1 and Vn+1 which are equal. 

 
 

 
Consider an example graph G1. 

 
 
 
 
 

 

 

 

 

 
 
 

 

The graph G1 has Hamiltonian cycles: 

 

 
->1,3,4,5,6,7,8,2,1 and 

->1,2,8,7,6,5,4,3,1. 
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The backtracking algorithm helps to find Hamiltonian cycle for any type of graph. 

 

 
Procedure: 

 

 
Define a solution vector X(Xi ............. Xn) where Xi represents the I th visited 

vertex of the proposed cycle. 

 

 
Create a cost adjacency matrix for the given graph. 

 

 
The solution array initialized to all zeros except X(1)=1,b’coz the cycle should start 

at vertex ‘1’. 

 

 
Now we have to find the second vertex to be visited in the cycle. 

 

The vertex from 1 to n are included in the cycle one by one by checking 2 

conditions, 

1. There should be a path from previous visited vertex to current vertex. 
 

 
2. The current vertex must be distinct and should not have been visited 

earlier. 
 
 

6. When these two conditions are satisfied the current vertex is included in the 

cycle, else the next vertex is tried. 

 

 
7. When the nth vertex is visited we have to check, is there any path from nth vertex 

to first 8vertex. if no path, the go back one step and after the previous visited node. 

 

 
8. Repeat the above steps to generate possible Hamiltonian cycle. 

 

 
Algorithm:(Finding all Hamiltonian cycle) 
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Algorithm Hamiltonian (k) 

{ 

Loop 
 

Next value (k) If 

(x (k)=0) then return; 

{ 
 

If k=n then 

Print (x) 

Else 

Hamiltonian (k+1); 

End if 

 

} 

Repeat 

} 

 

 
Algorithm Nextvalue (k) 

{ 

Repeat 

{ 
 

X [k]=(X [k]+1) mod (n+1); //next vertex If 

(X [k]=0) then return; 

If (G [X [k-1], X [k]] 0) then 
 

{ 

For j=1 to k-1 do if (X [j]=X [k]) then break; // 

Check for distinction. 

If (j=k) then //if true then the vertex is distinct. 

If ((k<n) or ((k=n) and G [X [n], X [1]] 0)) then return; 
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} 

} Until (false); 

} 

 

 
3.7.8-QUEENS PROBLEM: 

 

 
This 8 queens problem is to place n-queens in an ‘N*N’ matrix in such a way that no two 

queens attack each otherwise no two queens should be in the same row, column, 

diagonal. 

 

 
Solution: 

 

 
The solution vector X (X1…Xn) represents a solution in which Xi is the 

column of the th row where I th queen is placed. 

 

First, we have to check no two queens are in same row. 

 

 
Second, we have to check no two queens are in same column. 

 

 
The function, which is used to check these two conditions, is [I, X (j)], which 

gives position of the I th queen, where I represents the row and X (j) represents 
the column position. 

 

 
Third, we have to check no two queens are in it diagonal. 

 

 
Consider two dimensional array A[1:n,1:n] in which we observe that every 

element on the same diagonal that runs from upper left to lower right has the 

same value. 

 

 
Also, every element on the same diagonal that runs from lower right to upper left 

has the same value. 
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Suppose two queens are in same position (i,j) and (k,l) then two queens lie on the 

same diagonal , if and only if |j-l|=|I-k|. 

 

 
3.7.1.STEPS TO GENERATE THE SOLUTION: 

 

 
Initialize x array to zero and start by placing the first queen in k=1 in the first row. 

To find the column position start from value 1 to n, where ‘n’ is the no. Of 

columns or no. Of queens. 

If k=1 then x (k)=1.so (k,x(k)) will give the position of the k th queen. Here we 

have to check whether there is any queen in the same column or diagonal. 

For this considers the previous position, which had already, been found out. 

Check whether 

X (I)=X(k) for column |X(i)-X(k)|=(I-k) for the same diagonal. 
 

If any one of the conditions is true then return false indicating that k th queen can’t 

be placed in position X (k). 

For not possible condition increment X (k) value by one and precede d until the 

position is found. 

If the position X (k) n and k=n then the solution is generated completely. 

 
 

If k<n, then increment the ‘k’ value and find position of the next queen. 

 

If the position X (k)>n then k th queen cannot be placed as the size of the matrix is 
‘N*N’. 

So decrement the ‘k’ value by one i.e. we have to back track and after the 

position of the previous queen. 

 

 
Algorithm: 

Algorithm place (k,I) 

//return true if a queen can be placed in k th row and I th column. otherwise it returns // 
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//false .X[] is a global array whose first k-1 values have been set. Abs® returns the 

//absolute value of r. 

{ 
 

For j=1 to k-1 do 

If ((X [j]=I) //two in same column. 

Or (abs (X [j]-I)=Abs (j-k))) 

Then return false; 

Return true; 

} 

 

 
Algorithm Nqueen (k,n) 

 

//using backtracking it prints all possible positions of n queens in ‘n*n’ chessboard. So 

//that they are non-tracking. 

{ 
 

For I=1 to n do 

{ 
 

If place (k,I) then 

{ 
 

X [k]=I; 

If (k=n) then write (X [1:n]); 

Else nquenns(k+1,n) ; 

} 
 

} 

} 
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Example: 4 queens. 

Two possible solutions are 
 

 
Q Q 

Q Q 

Q Q 

Q Q 

 

 
Solutin-1 

 
 

Solution 2 

(2413) (3142) 

 

 
 GRAPH COLORING: 

 

 
Let ‘G’ be a graph and ‘m’ be a given positive integer. If the nodes of ‘G’ can 

be colored in such a way that no two adjacent nodes have the same color. Yet 

only ‘M’ colors are used. So it’s called M-color ability decision problem. 

The graph G can be colored using the smallest integer ‘m’. This integer is 

referred to as chromatic number of the graph. 

A graph is said to be planar iff it can be drawn on plane in such a way that no 

two edges cross each other. 

Suppose we are given a map then, we have to convert it into planar. Consider 

each and every region as a node. If two regions are adjacent then the 

corresponding nodes are joined by an edge. 

Consider a map with five regions and its graph. 

 

 
4 

 
 
 

2 
 
 
 

3 

5 

1 
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1 is adjacent to 2, 3, 4. 
   1 

2 is adjacent to 1, 3, 4, 5 

3 is adjacent to 1,2,4 
  

4 is adjacent to 1,2,3,5 
2 3 

5 is adjacent to 2, 4 
  

  5 4 

Steps to color the Graph: 
 
 
 

1. First create the adjacency matrix graph(1:m,1:n) for a graph, if there is an edge 

between i,j then C(i,j) = 1 otherwise C(i,j) =0. 

 

 
2. The Colors will be represented by the integers 1,2,…..m and the solutions will 

be stored in the array X(1),X(2), ........................ ,X(n) ,X(index) is the color, index 

is the node. 

 

 
3. He formula is used to set the color is, 

X(k) = (X(k)+1) % (m+1) 

 

4. First one chromatic number is assigned ,after assigning a number for ‘k’ node, 

we have to check whether the adjacent nodes has got the same values if so then 

we have to assign the next value. 

 

 
5. Repeat the procedure until all possible combinations of colors are found. 

 
 

 
6. The function which is used to check the adjacent nodes and same color is, If(( 

Graph (k,j) == 1) and X(k) = X(j)) 
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1 
2 

4 3 

 

Example: 
 
 

 

N= 4 

M= 3 

 

 
Adjacency Matrix: 

 

 
0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

 

Problem is to color the given graph of 4 nodes using 3 colors. 

 

 
Node-1 can take the given graph of 4 nodes using 3 colors. 

 

 
The state space tree will give all possible colors in that ,the numbers which are inside 

the circles are nodes ,and the branch with a number is the colors of the nodes. 
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State Space Tree: 

 

Algorithm: 

 

 
Algorithm mColoring(k) 

 

// the graph is represented by its Boolean adjacency matrix G[1:n,1:n] .All assignments 

//of 1,2,……….,m to the vertices of the graph such that adjacent vertices are assigned 

//distinct integers are printed. ’k’ is the index of the next vertex to color. 

 

 
{ 

repeat 

{ 
 

// generate all legal assignment for X[k]. 

Nextvalue(k); // Assign to X[k] a legal color. 

If (X[k]=0) then return; // No new color possible. 
 

If (k=n) then 

the ‘n’ vertices 

Write(x[1:n]);  

Else mcoloring(k+1); 

// Almost ‘m’ colors have been used to color 
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}until(false); 

} 

 

 
Algorithm Nextvalue(k) 

 

 
// X[1],……X[k-1] have been assigned integer values in the range[1,m] such that 

//adjacent values have distinct integers. A value for X[k] is determined in the 

//range[0,m].X[k] is assigned the next highest numbers color while maintaining 

//distinctness form the adjacent vertices of vertex K. If no such color exists, then X[k] is 

0. 

{ 
 
 
 

repeat 

{ 

X[k] = (X[k]+1)mod(m+1); // next highest color. 
 

If(X[k]=0) then return; //All colors have been used. 
 

For j=1 to n do 

{ 
 

// Check if this color is distinct from adjacent color. 

If((G[k,j] 0)and(X[k] = X[j])) 

// If (k,j) is an edge and if adjacent vertices have the same color. 

Then break; 

} 
 
 
 

if(j=n+1) then return; //new color found. 

} until(false); //otherwise try to find another color. 

} 
 

 

The time spent by Nextvalue to determine the children is (mn) 
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Total time is = (mn n). 

 

 
 KNAPSACK PROBLEM USING BACKTRACKING: 

 

 
The problem is similar to the zero-one (0/1) knapsack optimization problem is 

dynamic programming algorithm. 

 

 
We are given ‘n’ positive weights Wi and ’n’ positive profits Pi, and a positive 

number ‘m’ that is the knapsack capacity, the is problem calls for choosing a 

subset of the weights such that, 
 
 
 

WiXi PiXi 

1 i n m and 1 i n is Maximized. 
 

 

Xi Constitute Zero-one valued Vector. 

 

 
The Solution space is the same as that for the sum of subset’s problem. 

 
 

 
Bounding functions are needed to help kill some live nodes without expanding 

them. A good bounding function for this problem is obtained by using an upper 

bound on the value of the best feasible solution obtainable by expanding the 

given live node. 

 

 
The profits and weights are assigned in descending order depend upon the ratio. 

 

 
(i.e.) Pi/Wi P(I+1) / W(I+1) 

 
 

Solution : 
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After assigning the profit and weights ,we have to take the first object weights 

and check if the first weight is less than or equal to the capacity, if so then we 

include that object (i.e.) the unit is 1.(i.e.) K 1. 

 
 

 
Then We are going to the next object, if the object weight is exceeded that 

object does not fit. So unit of that object is ‘0’.(i.e.) K=0. 

Then We are going to the bounding function ,this function determines an upper 

bound on the best solution obtainable at level K+1. 

 

 
Repeat the process until we reach the optimal solution. 

 

 
Algorithm: 

 

 
Algorithm Bknap(k,cp,cw) 

 

 
// ‘m’ is the size of the knapsack; ‘n’ no.of weights & profits. W[]&P[] are the 

//weights & weights. P[I]/W[I] P[I+1]/W[I+1]. 

//fw Final weights of knapsack. 

//fp final max.profit. 

//x[k] = 0 if W[k] is not the knapsack,else X[k]=1. 
 
 
 

{ 

// Generate left child. 

If((W+W[k] m) then 

{ 

Y[k] =1; 
 

If(k<n) then Bnap(k+1,cp+P[k],Cw +W[k]) 

If((Cp + p[w] > fp) and (k=n)) then 
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{ 

fp = cp + P[k]; 

fw = Cw+W[k]; 

for j=1 to k do X[j] = Y[j]; 

} 

} 
 

 

if(Bound(cp,cw,k) fp) then 
 

{ 

y[k] = 0; 

if(k<n) then Bnap (K+1,cp,cw); 

if((cp>fp) and (k=n)) then 

{ 
 

fp = cp; 

fw = cw; 

for j=1 to k do X[j] = Y[j]; 

} 

} 

} 
 
 
 

Algorithm for Bounding function: 

 

 
Algorithm Bound(cp,cw,k) 

// cp current profit total. //cw 

current weight total. 

//k the index of the last removed item. //m 

the knapsack size. 
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{ 

b=cp; 

c=cw; 

for I =- k+1 to n do 

{ 

c= c+w[I]; 

if (c<m) then b=b+p[I]; 

else return b+ (1-(c-m)/W[I]) * P[I]; 

} 
 

return b; 

} 
 
 

 
Example: 

 
M= 6 Wi = 2,3,4 

 
4 2 

 
2 

 
N= 3 

 
Pi 

 
= 1,2,5 

 
Pi/Wi (i.e.) 

 
5 2 1 

 
Xi = 1 

 
0 

 
1 

  

 

The maximum weight is 6 

 

 
The Maximum profit is (1*5) + (0*2) + (1*1) 

5+1 
 

6. 

 

 
Fp = (-1) 

1 3&0+4 6 
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cw = 4,cp = 5,y(1) =1 

k = k+2 

 

2 3 but 7>6 so 
 

y(2) = 0 

 
 

So bound(5,4,2,6) 

 

 
B=5 

C=4 

I=3 to 3 

C=6 

6 6 

 
So return 5+(1-(6-6))/(2*1) 

 

 
5.5 is not less than fp. 

So, k=k+1 (i.e.) 3. 

 
3=3 & 4+2 6 

 
 

cw= 6,cp = 6, y(3)=1. 

K=4. 

 

If 4> 3 then 

Fp =6,fw=6,k=3 ,x(1) 1 0 1 

The solution Xi 1 0 1 

Profit 6 

Weight 6. 
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 BRANCH AND BOUND -- THE METHOD 
 

The design technique known as branch and bound is very similar to backtracking 

(seen in unit 4) in that it searches a tree model of the solution space and is applicable to 

a wide variety of discrete combinatorial problems. 

 

 
Each node in the combinatorial tree generated in the last Unit defines a problem 

state. All paths from the root to other nodes define the state space of the problem. 

 

 
Solution states are those problem states 's' for which the path from the root to 's' 

defines a tuple in the solution space. The leaf nodes in the combinatorial tree are the 

solution states. 

 

 
Answer states are those solution states 's' for which the path from the root to 's' 

defines a tuple that is a member of the set of solutions (i.e.,it satisfies the implicit 

constraints) of the problem. 

 

 
The tree organization of the solution space is referred to as the state space tree. 

 

 
A node which has been generated and all of whose children have not yet been 

generated is called a live node. 

 

 
The live node whose children are currently being generated is called the E- node 

(node being expanded). 

 

 
A dead node is a generated node, which is not to be expanded further or all of 

whose children have been generated. 

 

 
Bounding functions are used to kill live nodes without generating all their children. 

UNIT – IV 



 

 

Depth first node generation with bounding function is called backtracking. State 

generation methods in which the E-node remains the E-node until it is dead lead to 

branch-and-bound method. 

 

 
The term branch-and-bound refers to all state space search methods in which all 

children of the E-node are generated before any other live node can become the E-

node. 

 

 
In branch-and-bound terminology breadth first search(BFS)- like state space search 

will be called FIFO (First In First Output) search as the list of live nodes is a first -in-first -

out list(or queue). 

 

 
A D-search (depth search) state space search will be called LIFO (Last In First Out) 

search, as the list of live nodes is a list-in-first-out list (or stack). 

 
 

 
Bounding functions are used to help avoid the generation of sub trees that do not 

contain an answer node. 

 

 
The branch-and-bound algorithms search a tree model of the solution space to get 

the solution. However, this type of algorithms is oriented more toward optimization. An 

algorithm of this type specifies a real -valued cost function for each of the nodes that 

appear in the search tree. 

 

 
Usually, the goal here is to find a configuration for which the cost function is 

minimized. The branch-and-bound algorithms are rarely simple. They tend to be quite 

complicated in many cases. 

 

 
Example 8.1[4-queens] Let us see how a FIFO branch-and-bound algorithm would 

search the state space tree (figure 7.2) for the 4-queens problem. 
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Initially, there is only one live node, node1. This represents the case in which no 

queen has been placed on the chessboard. This node becomes the E-node. 

 
 

 
It is expanded and its children, nodes2, 18, 34 and 50 are generated. 

 

 
These nodes represent a chessboard with queen1 in row 1and columns 1, 2, 3, and 

4 respectively. 

 

 
The only live nodes 2, 18, 34, and 50.If the nodes are generated in this order, then 

the next E-node are node 2. 

 

 
It is expanded and the nodes 3, 8, and 13 are generated. Node 3 is immediately 

killed using the bounding function. Nodes 8 and 13 are added to the queue of live nodes. 
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Node 18 becomes the next E -node. Nodes 19, 24, and 29 are generated. Nodes 19 

and 24 are killed as a result of the bounding functions. Node 29 is added to the queue of 

live nodes. 

 

 
Now the E- node is node 34.Figure 8.1 shows the portion of the tree of Figure 

that is generated by a FIFO branch -and-bound search. Nodes that are killed as a result 

of the bounding functions are a "B" under them. 

 

 
Numbers inside the nodes correspond to the numbers in Figure 7.2.Numbers outside 

the nodes give the order in which the nodes are generated by FIFO branch-and-bound. 

 

 
At the time the answer node, node 31, is reached, the only live nodes remaining are 

nodes 38 and 54. 

 
 

 

 
 
 

 Least Cost (LC) Search: 

 

 
In both LIFO and FIFO branch-and-bound the selection rule for the next E-node is rather 

rigid and in a sense blind. The selection rule for the next E-node does not give any 

preference to a node that has a very good chance of getting the search to an answer 

node quickly. 
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Thus, in Example 8.1, when node 30 is generated, it should have become obvious to 

the search algorithm that this node will lead to answer node in one move. However, the 

rigid FIFO rule first requires the expansion of all live nodes generated before node 30 

was expanded. 

 

 
The search for an answer node can often be speeded by using an "intelligent" 

ranking function  (.) for live nodes. The next E-node is selected on the basis of this 

ranking function. 

 

 
If in the 4-queens example we use a ranking function that assigns node 30 a better 

rank than all other live nodes, then node 30 will become E -node, following node 29.The 

remaining live nodes will never become E-nodes as the expansion of node 30 results in 

the generation of an answer node (node 31). 

 

 
The ideal way to assign ranks would be on the basis of the additional computational 

effort (or cost) needed to reach an answer node from the live node. 

For any node x, this cost could be 

 

 
(1) The number of nodes on the sub-tree x that need to be generated before any 

answer node is generated or, more simply, 

 

 
(2) The number of levels the nearest answer node (in the sub-tree x) is from 

x 

 

 
Using cost measure (2), the cost of the root of the tree of Figure 8.1 is 4 (node 31 is 

four levels from node 1).The costs of nodes 18 and 34,29 and 35,and 30 and 38 are 

respectively 3, 2, and 1.The costs of all remaining nodes on levels 2, 3, and 4 are 

respectively greater than 3, 2, and 1. 

 

 
Using these costs as a basis to select the next E-node, the E-nodes are nodes 1, 18, 

29, and 30 (in that order).The only other nodes to get generated are nodes 2, 34, 50, 

19, 24, 32, and 31. 
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The difficulty of using the ideal cost function is that computing the cost of a node 

usually involves a search of the sub-tree x for an answer node. Hence, by the time the 

cost of a node is determined, that sub-tree has been searched and there is no need to 

explore x again. For this reason, search 

algorithms usually rank nodes only based on an estimate (.) of their cost. 

 
 

Let (x) be an estimate of the additional effort needed to reach an answer node from 

x. node x is assigned a rank using a function (.) such that  (x) =f 

(h(x)) + (x), where h(x) is the cost of reaching x from the root and f(.) is any non- decreasing 

function. 

 

 
A search strategy that uses a cost function (x) =f (h(x)) + (x), to select the next e-

node would always choose for its next e-node a live node with least (.).Hence, such a 

strategy is called an LC-search (least cost search). 

 

 
Cost function c (.) is defined as, if x is an answer node, then c(x) is the cost (level, 

computational difficulty, etc.) of reaching x from the root of the state space tree. If x is 

not an answer node, then c(x) =infinity, providing the sub-tree x contains no answer 

node; otherwise c(x) is equals the cost of a minimum cost answer node in the sub-tree x. 

 

 
It should be easy to see that  (.) with f (h(x)) =h(x) is an approximation to c (.). 

From now on (x) is referred to as the cost of x. 

 

 
 Bounding: 

 

 
A branch -and-bound searches the state space tree using any search 

mechanism in which all the children of the E-node are generated before another node 

becomes the E-node. 

 

 
We assume that each answer node x has a cost c(x) associated with it and that 

a minimum-cost answer node is to be found. Three common search strategies are FIFO, 

LIFO, and LC. 
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A cost function   (.) such that  (x) <=c(x) is used to provide lower bounds on 

solutions obtainable from any node x. If upper is an upper bound on the cost of a 

minimum-cost solution, then all live nodes x with   (x)>upper may be killed as all answer 

nodes reachable from x have cost c(x)>=  (x)>upper. The starting value for upper can be 

set to infinity. 

 

 
Clearly, so long as the initial value for upper is no less than the cost of a 

minimum-cost answer node, the above rule to kill live nodes will not result in the killing of 

a live node that can reach a minimum-cost answer node 

.Each time a new answer is found ,the value of upper can be updated. 

 

 
As an example optimization problem, consider the problem of job scheduling with 

deadlines. We generalize this problem to allow jobs with different processing times. We 

are given n jobs and one processor. Each job i has associated with it a three tuple 

( ).job i requires   units of processing time .if its processing is not 

completed by the deadline  , and then a penalty   is incurred. 

 

 
The objective is to select a subset j of the n jobs such that all jobs in j can be 

completed by their deadlines. Hence, a penalty can be incurred only on those jobs not in 

j. The subset j should be such that the penalty incurred is minimum among all possible 

subsets j. such a j is optimal. 

 

 
Consider the following instances: n=4,( ,  ,    )=(5,1,1),(    ,  , 

)=(10,3,2),(  , ,  )=(6,2,1),and( , , )=(3,1,1).The solution space for this instances 

consists of all possible subsets of the job index set{1,2,3,4}. The solution space can be 

organized into a tree by means of either of the two formulations used for the sum of 

subsets problem. 
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Figure 8.7 

 
 
 
 
 
 

Figure 8.6 corresponds to the variable tuple size formulations while figure 8.7 

corresponds to the fixed tuple size formulation. In both figures square nodes represent 

infeasible subsets. In figure 8.6 all non-square nodes are answer nodes. Node 9 

represents an optimal solution and is the only minimum-cost answer node 

.For this node j= {2,3} and the penalty (cost) is 

8. In figure 8.7 only non-square leaf nodes are answer nodes. Node 25 represents the 

optimal solution and is also a minimum-cost answer node. 
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This node corresponds to j={2,3} and a penalty of 8. The costs of the answer 

nodes of figure 8.7 are given below the nodes. 

 
 
 
 
 
 
 
 

 
 TRAVELLING SALESMAN PROBLEM 

 

 
It is algorithmic procedures similar to backtracking in which a new branch is 

chosen and is there (bound there) until new branch is choosing for advancing. 

 
 

 
This technique is implemented in the traveling salesman problem [TSP] 

which are asymmetric (Cij <>Cij) where this technique is an effective procedure. 

 
 
 
 
 

STEPS INVOLVED IN THIS PROCEDURE ARE AS FOLLOWS: 

 

 
STEP 0: Generate cost matrix C [for the given graph g] 

 
 
 

STEP 1: [ROW REDUCTION] 

For all rows do step 2 

 

 
STEP:  Find least cost in a row and negate it with rest of the 

elements. 

 

STEP 3: [COLUMN REDUCTION] 

Use cost matrix- Row reduced one for all columns do STEP 4. 
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STEP 4: Find least cost in a column and negate it with rest of the elements. 
 
 
 

 
STEP 5: Preserve cost matrix C [which row reduced first  and then 

column reduced] for the i th time. 

 

 

STEP 6: Enlist all edges (i, j) having cost = 0. 
 

 

STEP 7: Calculate effective cost of the edges. (i, j)=least cost in the i th row excluding (i, 

j) + least cost in the j th column excluding (i, j). 

 

 
STEP 8: Compare all effective cost and pick up the largest l. If two or more have same 

cost then arbitrarily choose any one among them. 

 

 
STEP 9: Delete (i, j) means delete ith row and jth column change (j, i) value to 

infinity. (Used to avoid infinite loop formation) If (i,j) not present, leave it. 

 
 

 
STEP 10: Repeat step 1 to step 9 until the resultant cost matrix having order of 2*2 and 

reduce it. (Both R.R and C.C) 

 

 
STEP 11: Use preserved cost matrix Cn, Cn-1… C1 

 

Choose an edge [i, j] having value =0, at the first time for a preserved matrix and leave 

that matrix. 

 

 
STEP 12: Use result obtained in Step 11 to generate a complete tour. 

 
 
 
 
 

EXAMPLE: Given graph G 
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MATRIX: 
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PHASE I 
 
 
 

STEP 1: Row Reduction C 

 

 
C1 [ROW REDUCTION: 

 
 
 
 

 
 
 
 

 

STEP 3: C1 [Column Reduction] 
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STEP 6:  

 

 
 
 
 

STEP 5: 

Preserve the above in C1, 
 
 
 
 

L= (1,2), (2,1), (3,5), (4,5), (5,3), (5,4) 

 
Design and Analysis of Algorithms 

  
111 

  

 



STEP 10: The Cost matrix 2 x 2.  

 

STEP 7: 

Calculation of effective cost [E.C] 

(1,2) = 2+1 =3 

(2,1) = 12+3 = 15 

(3,5) = 2+0 =2 

(4,5) = 3+0 = 3 

(5,3) = 0+12 = 12 

(5,4) = 0+2 = 2 
 
 
 

STEP 8: 

L having edge (2,1) is the largest. 
 
 
 

STEP 9: Delete (2,1) from C1 and make change in it as (1,2) if exists. 

 
 
 

Now Cost Matrix = 
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Therefore, go to step 1. 

 

 
PHASE II: 

 
 
 

STEP1: C2(R, R) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STEP 3: C2 (C, R) 
 
 
 

2 3 4   5 
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STEP 5: Preserve the above in C2 
 
 
 

C2 = 
 

 
 
 
 

STEP 6: 
 
 
 

L= {(1,5), (3,5), (4,5), (5,2), (5,3), (5,4)} 

 

 
STEP 7: calculation of E.C. 

 
 
 

(1,5) = 1+0 =1 

(3,5) = 2+0 =2 

(4,5) = 18+0 =18 
 

(5,2) = 0+13 =13 

(5,3) = 0+13 =13 

(5,4) = 0+1 =1 

 

 
STEP 8: L having an edge (4,5) is the largest. 
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STEP 9: Delete (4,5) from C2 and make change in it as (5,4) = if exists. 
 
 
 
 
 

Now, cost matrix 

 

 
2 3 4 

 
 

 
STEP 10: THE cost matrix 2x2 hence go to step 1 

 
 
 

PHASE III: 
 
 
 

STEP 1: C3 (R, R) 
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STEP 3: C3 (C, R) 
 
 
 

 
 
 

STEP 5: preserve the above in C2 
 
 
 

STEP 6: L={(1,4), (3,4), (5,2), (5,3)} 
 
 
 

STEP 7: calculation of E.C 

(1,4)=12+0=12 

(3,4)=11+0=11 

(5,2)=0+11=11 

(5,3)=0+12=12 

 

 
STEP 8: Here we are having two edges (1,4) and (5,3) with cost = 12. Hence arbitrarily 

choose (1,4) 

 

 
STEP 9: Delete (i,j) (1,4) and make change in it (4,1) = if exists. Now cost matrix is 

 

2 3 
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STEP 10: We have got 2x2 matrix 
 
 
 

C4 (RR)= 
 

2 3 

0  

3  

0 0 
5  

 
 
 
 

 

C4 (C, R) =  

2 3 

0 3 
 

  

0 0 
5  

 
 
 
 

 

Therefore,C4 =  

2 3 

0 3 
 

  

0 0 

5  

 
 
 

 
STEP 11: LIST C1, C2, C3 AND C4 

 
 
 

C4 
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12 0 

 
 
 
 
 
 
0 0 0 

 
 
 
 
 
 
 
 

15 1 0 0 

2 3 

3 

5 
 
 
 
 

C3 2 3 4 

1 
 

3 
11 0 

5 
0 0 

 
C2 = 

 
 
 
 
 

1  
13 1 0 

3 
13 

 
2 0 

4 43 18 
 

0 

5 
 

 
C1 =      

1 2 3 4 5 

1  
0 15 3 2 

2 
0 

 
12 22 20 

3 
18 14 

 
2 0 

4 3 44 18 
 

0 

5 
 
 
 
 

STEP 12: 
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0 

 
0 0 



 

 
 
0 0 

12 0 

Use C4 = 
 
 

 
2 3 

0  

3     

 

5 

 

 
Pick up an edge (I, j) =0 having least index 

 

 
Here (3,2) =0 

 

 
Hence, T (3,2) 

 

 
Use C3 = 

2 3 4 

1 
 

3 
11 0 

5 
0 0 

 

 
Pick up an edge (i, j) =0 having least index 

 

 
Here (1,4) =0 

 

 
Hence, T (3,2), (1,4) 

 

 
Use C2= 
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0 0 0 

 
 
 
 
 
 
 
 

15 1 0 0 

2  3 4 5 

  
13 1 0 

1  

13 
  

2 
 

0 

3     

4    
43 18  0 

5 
 
 
 

Pick up an edge (i, j) with least cost index. 

 

 
Here (1,5) not possible because already chosen index i (i=j) 

(3,5)  not possible as already chosen index. 

(4,5) 0 

 

 
Hence, T (3,2), (1,4), (4,5) 

 

 
Use C1 = 

 
 

 
 1 2 3 4 5 

1  
0 15 3 2 

2 
0 

 
12 22 20 

3 
18 14 

 
2 0 

4 3 44 18 
 

0 

5 
 
 
 
 

Pick up an edge (i, j) with least index 

 

 
(1,2) Not possible 
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LOWER BOUND THEORY 

(2,1) Choose it 

HENCE T (3,2), (1,4), (4,5), (2,1) 

 

 
SOLUTION: 

 
 
 

From the above list 

3—2—1—4—5 

This result now, we have to return to the same city where we started (Here 3). 

 
 

 
Final result: 

3—2—1—4—5—3 

 

 
Cost is 15+15+31+6+7=64 

 
 
 

 
 

 COMPARISON TREES 

 
We now show that MergeSort is also optimal on average, since nlog n is also a 

lower bound (again, up to a constant) for the average behavior of comparison-based 
sorting. This latter result will be established using a comparison tree argument. Given 
any comparison-based algorithm with input list 

L[0:n-1] = {x1, x2, ..., xn}, (internal) nodes in the comparison tree T associated with the 
algorithm correspond to comparisons performed by the algorithm between list elements. 
For specificity, our convention will be that if the comparison is made 

between xi and xj, and i < j, then we will label the corresponding node xi:xj. If xi < xj, then 

a left child will be the node corresponding to the next comparison made next by the 

algorithm, or this left child will be a leaf node if the algorithm 

terminates. Similarly, if xi > xj (we can assume distinct list elements for the purpose of 
establishing lower bounds), then the right child will be the node corresponding to the next 
comparison made by the algorithm, or will be a leaf node if the algorithm terminates. 
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NOTE: our labeling of the nodes refers to the list elements, not to their positions at the 

time the comparison corresponding to a given node is made. 

 

The following figure illustrates the comparison-tree associated with InsertionSort for a list 

L[0:2] of 3 distinct elements x1, x2, x3. 
 

Key Fact. The comparson tree associated with any comparison-based sorting algorithm 

has n! leaf nodes. 

The Key Fact follows from the fact that there are n! factorial permutations of n symbols, 

and different permutations must end up at different leaf nodes of the comparison tree 

when input to the algorithm. Since the comparison tree associated with a comparison-

based sorting algorithm is a binary tree, lower bounds for both worst-case and average 

complexity can be obtained from lower bounds for the depth and leaf path length (= sum 

of the lengths of all paths from the root to a leaf), respectively, of a binary tree having L 

leaf nodes. 

 

Proposition 1. Let T be any binary tree with L leaf nodes. Then 
 

Depth(T)≥ ceil(log2L) 

Proposition 1 is clearly true for complete binary trees (verify this!), so it is intuitively 

evident that it holds for arbitrary binary trees since the complete binary tree has the 

smallest depth for a given number L of leaf nodes. The formal proof of Proposition 1 can 

be found on p. 120 in the text. It follows immediately from Proposition 1 that 

W(n) ≥ ceil(log2L) 
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for any comparison-based sorting algorithm.  Now, ceil(log2L) = ceil(log2n!) ∈ 
Ω(nlog n), so that we have established another proof of the fact that nlog n is a 

lower bound for the worst-case complexity of comparison-based sorting. 

The following Proposition will give us a lower bound of nlog n for the average case 

as well. 

Proposition 2. Let T be any binary tree having L leaf nodes. Then the leaf path 

length LPL of T satisfies: 

LPT(T) ≥ Lfloor(log2L) ∈ Ω(Llog L) 

Again, Proposition 2 is clearly true for complete binary trees (verify this!), so it is 

evidently true for arbitrary trees. A formal proof of Proposition 2 can be found on 

p. 124 in the text. Now if T is the comparison tree associated with any comparison- based 

sorting algorithm, we see that A(n) = LPT(T)/L, so that Proposition 2 shows that nlog n is 

a lower bound for the average behavior of any comparison-based algorithm. Again, our 

old friends MergeSort, QuickSort, and TreeSort are all optimal average behavior 

comparison-based sorting algorithms. 

 

We now illustrate our third technique for establishing lower bounds, namely adversary 

arguments. This technique establishes lower bounds by creating an input instance, 

based on the performance of the algorithm, which guarantees that the algorithm must do 

a determined amount of work on this input in order to be correct for this input. This 

amount of work then gives a lower bound for the worst- case complexity of the algorithm. 

Another adversary-type technique is to construct an input to an algorithm which 

contradicts the correctness of the algorithm if the algorithm performs less than some 

given number of basic operations. We start with an example of this type of adversary 

argument. 

 
 
 

 FINDING THE MAXIMUM IN A LIST 

 
The usual linear scan for finding the maximum element in a list L[0:n-1] of size n turns 

out to be optimal, since ANY comparison-based algorithm for solving this problem must 

make n - 1 comparsions between list elements. This might seem obvious, since certainly 

every element must participate in at least one comparison. However, only n/2 

comparisons are required to ensure that each element is involved in a comparison. Just 

pair the elements up into disjoint pairs a make a comparison to the two elements in each 

pair. Of course, this doesn't yet determine the maximum, but it shows the need for 

further justification that n - 1 comparisons will eventually be required. Again, throughout 

we will assume distinct list elements. 

To get the lower bound of n - 1 comparisons, we consider a comparison between list 

elements x and y to declare as the loser the smaller of the two elements. Thus, each 

comparison results in exactly one loser. We now note that there must be n - 1 losers if 

the algorithm is to determine the maximum 
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element in a list L[0:n-1] correctly. Indeed, assume that there are two elements x and y 

who never lost a comparison, and, for definiteness, assume that x > y. Now we may 

suppose that the algorithm has declared that x is the maximum element (otherwise it is 

clearly incorrect). Now construct a new list L' which agrees with L except that y is 

replaced by an element y' > x 

> y. Note that the algorithm will perform exactly the same action on L' as it did with L, 

since y' will win every comparison that involved y (and the outcome of all the other 

comparisons will also be the same). Hence, the algorithm will again declare x to be the 

maximum element, which is a contradiction. We state this result as a proposition. 

Proposition 3. Any comparison-based algorithm must make (at least) n - 1 comparisons 

of list elements in order to correctly determine the maximum. 

 

Proposition 3 shows that the familiar linear scan algorithm for finding the maximum is an 
(exactly) optimal algorithm. It is interesting that there is another algorithm also 
performing n - 1 comparisons to find the maximum, but this time it is based on the 
familiar single elimination tournament model so familiar from the sporting world. For 

simplicity, we assume that n = 2k. Divide up the list into disjoint pairs, and determine the 

n/2 pair-wise winners (1st round of the tournament). Then divide up the n/2 first-round 
winners into pairs and determine 

the n/4 second round winners. After precisely log2n rounds the winner (maximum) will be 

determined. But how many comparisons (matches) were made? Easy, we get, for n = 2k: 

2k-1 + 2k-2 + ... + 1 = 2k - 1 = n - 1. 

 
 FINDING THE MAXIMUM AND THE MINIMUM 

 
The most naive method MaxMin1 for finding the maximum and minimum elements in a 

list is to make two linear scans (or run winner and loser tournaments), resulting in 2n - 2 

comparisons. However, one imagines that this can be improved, since information about 

both elements involved in a comparison might be utilized. In fact, the following slightly 

less naive algorithm certainly improves MaxMin1, at least on average. 

function MaxMin2(L[0:n-1]) Input: 

L[0:n-1] (a list of size n) Output: 

the maximum value in L 

Max = Min = L[0] for 

i = 1 to n-1 do 

if L[i] > Max then Max = L[i] 

else 

if L[i] < Min then Min = L[i] 

endif 

endif 

enfor 

end MaxMin1 
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Note that in the best case of a strictly increasing list, MaxMin2 only makes n 

- 1 comparisons, whereas in the worst case W(n) of an decreasing list, MaxMin2 makes 

2n - 2 comparisons, i.e., is just as bad as MaxMin1. The question is, how good is 

MaxMin2 on average? Well, it turns out that it is disappointing, since its average 

behavior, while improved slightly over W(n), is nevertheless strongly asymptotic to W(n). 

This is because the average number of times that Max is updated in MaxMin2 is (guess 

what!) logarithmic in n, so that the average 
complexity A(n) of MaxMin2 is of the form A(n) = W(n) - f(n), where f(n) ∈ O(log n), i.e., 
A(n) ∈ Θ(W(n)) (actually, A(n) ~ W(n)). 

 
In order to determine the average behavior A(n) of MaxMin2, we assume, as 

usual, that the inputs are all permutations π: {1,2, ..., n} → {1,2, ..., n}, and that each 

permutation is equally likely. Now if m(π) denotes the the number of times Max is 

updated for input permutation π, then it is clear that 

 

 
A(n) = 2n - 2 - E[m]. 

 

Let A*(n) = E[m]. Note that π(n) is equally likely to be 1, 2, ..., n. Hence, 

 
 

A*(n) = 1/n(E[m| π(n) = 1] + E[m| π(n) = 2] + ... + E[m| π(n) = n]). 
 
 

Now it is clear that E[m| π(n) = n] = A*(n-1) + 1, whereas E[m| π(n) = i ≠ n] = A*(n- 1). 

Hence, we have the following recurrence for A*(n): 

 
 

A*(n) = A*(n - 1) + 1/n 

= A*(n - 2) + 1/n + 1/(n - 1) 

= 

... 

= A*(1) + 1/n + 1/(n - 1) + ... + 1/2 

 
= ~ ln n. 

Thus, we see that A(n) ~ W(n) ~ 2n. 
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 NP-HARD AND NP-COMPLETE PROBLEMS: 

 Basic concepts: 

Tractability: Some problems are tractable: that is the problems are solvable in 

reasonable amount of time called polynomial time. Some problems are intractable: that is 

as problem grow large, we are unable to solve them in reasonable amount of time called 

polynomial time. 

Polynomial Time Complexity: An algorithm is of Polynomial Complexity, if there exists 
a polynomial p() such that the computing time is O(p(n)) for every input size of ‘n’. 
Polynomial time is the worst-case running time required to an algorithm to process an 

input of size n the is O(nk) for some constant k 

 
Polynomial time: O(n2), O(n3), O(n log n) 

Not in polynomial time: O(2n), O(nn), O(n!) Exponential Time 

Most problems that do not yield polynomial-time algorithms are either 

optimization or decision problems. 

 

 
Decision Problems: Computational problem with 

produces output of “yes” or “no”, 1 or 0 are decision 

problems. 

Examples:     1. Path in a graph 
 

2. Minimum Spanning Tree whose cost is 

less than some value w. 

Optimization Problems: Computational problem 

where we try to maximize or minimize some value 

that is identifying optimal solution to problem 

Examples:     1. Shortest-path in a graph. 

2. Minimum Spanning Tree 

 

 
 CLASS P PROBLEMS: 

 

Class P problems are the set of decision problems solvable by deterministic algorithms in 

polynomial-time. 

A deterministic algorithm is (essentially) one that always computes the correct answer 
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Examples: Fractional Knapsack, MST, Single-source shortest path 

 

 
 CLASS NP PROBLEMS: 

 

NP problems are set of decision problems solvable by non-deterministic algorithms in polynomial- time. 

A nondeterministic algorithm is one that can “guess” the right answer or solution Examples: 

Hamiltonian Cycle (Traveling Sales Person), Conjunctive Normal Form (CNF) 

 
 

 
 NP-Complete Problems: 

A problem ‘x’ is a NP class problem and also NP-Complete if and only if every other problem in NP can be 

reducible (solvable) using non-deterministic algorithm in polynomial time. 

The class of problems which are NP-hard and belong to NP. 
 

The NP-Complete problems are always decision problems only. 

Example : TSP, Vertex covering problem 

 

Packing problems: SET-PACKING, INDEPENDENT-SET. 

Covering problems: SET-COVER, VERTEX-COVER. 

Sequencing problems: HAMILTONIAN-CYCLE, TSP. 

Partitioning problems: 3-COLOR, CLIQUE. 

Constraint satisfaction problems: SAT, 3-SAT. Numerical 

problems: SUBSET-SUM, PARTITION, KNAPSACK 

 

 NP-Hard Problems: 

A problem ‘x’ is a NP class problem and also NP-Hard if and only if every other problem in NP can be 

reducible (solvable) using non-deterministic algorithm in exponential time. 

The class of problems to which every NP problem reduces. 

The NP-Hard problems are decision problems and sometimes may be optimization problems. 

Example : Integer Linear Programming. 

 

Nondeterministic Algorithms: 
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Deterministic Algorithms: 
 

• Let A be an algorithm to solve problem P. A is called deterministic if it has only one choice in each step 

throughout its execution. Even if we run algorithm A again and again, there is no change in output. 

• Deterministic algorithms are identified with uniquely defined results in terms of output for a certain input. 

 

 
Nondeterministic Algorithms: 

 

• Let A be a nondeterministic algorithm for a problem P. We say that algorithm A accepts an instance of P if 

and only if, there exists a guess that leads to a yes answer. 

• In non deterministic algorithms, there is no uniquely defined result in terms of output for a certain input. 

• Nondeterministic algorithms are allowed to contain operations whose outcomes are limited to a given 

set of instances of P, instead of being uniquely defined results. 

• A Non-deterministic algorithm A on input x consists of two phases: 

– Guessing: An arbitrary “string of characters” is generated in polynomial time. It may 

Correspond to a solution Not correspond to a solution 

Not be in proper format of a solution Differ from one run to another 

– Verification: A deterministic algorithm verifies The 

generated “string of characters” is in proper format Whether it 

is a solution in polynomial time 

 

• The Nondeterministic algorithm uses three basic procedures, whose time complexity is O(1). 

1. CHOICE(1,n) or CHOICE(S) : This procedure chooses and returns an arbitrary element, 

in favor of the algorithm, from the closed interval [1,n] or from the set S. 
 

2. SUCCESS : This procedure declares a successful completion of the algorithm. 

3. FAILURE : This procedure declares an unsuccessful termination of the algorithm. 
 

• Non deterministic algorithm terminates unsuccessfully if and only if there is no set of choices leading 

to successful completion of algorithm 

• Non deterministic algorithm terminates successfully if and only if there exists set of choices leading to 

successful completion of algorithm 
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Nondeterministic Search Algorithm: The following algorithm enables nondeterministic search of x in an 

unordered array A with n elements. It determines an index j such that A[j] = x or j = −1 if x 

does not belongs to A. 
 

Algorithm nd_search ( A, n, x ) 

{ 

int j = choice ( 0, n-1 ); if 

( A[j] == x ) 

{ 

cout << j; 

success(); 

} 

cout << -1; 

failure(); 

} 

 
 
 
 
 
 

By the definition of nondeterministic algorithm, the 

output is -1 iff there is no j such that A[j] 

= x . Since A is not ordered, every deterministic 

search algorithm is of complexity O(n), whereas the 

nondeterministic algorithm has the complexity as 

O(1). 

 

 

Nondeterministic Sort Algorithm: The following algorithm sorts ‘n’ positive integers in non-decreasing order and 

produces output in sorted order. The array B[] is an auxiliary array initialized to 0 and is used for convenience. 
 

 

Algorithm nd_sort ( A, n ) 

{ 

for ( i = 0; i < n; B[i++] = 0; ); 

for ( i = 0; i < n; i++ ) 

{ 

j = choice ( 0, n - 1 ); if 

( B[j] != 0 ) failure(); B[j] 

= A[i]; 

} 

 

 
// Verify order 

for ( i = 0; i < n-1; i++ ) 

if ( B[i] > B[i+1] ) failure(); 

write ( B ); 

success(); 

} 

 

 
The time complexity of nd_sort is O(n). Best-known 

deterministic sorting algorithm like binary search has a 

complexity of (n log n). 
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Satisfiability: (SAT Problem) 
 
 
 

Let x1, x2 . . . denote a set of Boolean variables and xi denote the complement of x¯ i. A 

variable or its complement is called a literal 

A formula in propositional calculus is an expression that is constructed by connecting literals using the 

operations and ( ) & or ( ) 

Examples of formulas in propositional calculus (x1 ^ 

x2) V (x3 ^ x¯ 4) 

(x3 V x¯ 4) ^ (x1 V x¯ 2) 
 

Conjunctive normal form (CNF): A Boolean formula is said to be in conjunctive normal form (CNF) 

if it is the conjunction of formulas. 

Example: (x1 x¯ 2) (x¯ 1 x5) 
 

Disjunctive normal form (DNF) : A Boolean formula is said to be in disjunctive normal form (CNF) if it 

is the disjunction of formulas. 

Example: (x1 x¯ 2) (x1 x¯ 5) 

 

 
Satisfiability problem is to determine whether a formula is true for some assignment of truth values 

to the variables 

CNF--satisfiability is the satisfiability problem for CNF formulas DNF-

-satisfiability is the satisfiability problem for DNF formulas 

Polynomial time nondeterministic algorithm that terminates successfully iff a given 

propositional formula E(x1, . . . , xn) is satisfiable 

Non deterministically choose one of the 2n possible assignments of truth values to (x1, . 

. . , xn) and verify that E(x1, . . . , xn) is true for that assignment 

 

 
Algorithm eval ( E, n ) 

{ 
 

// Determine whether the propositional formula E is satisfiable. Here 

variable are x1, x2, ..., xn 
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for ( i = 1; i <= n; i++ ) 

x(i) = choice ( true, false ); if 

( E ( x1, ..., xn ) ) success(); 

else 

failure(); 

} 

 

 
The nondeterministic time to choose the truth value is O(n) 

The deterministic evaluation of the assignment is also done in O(n) time 

 

 
Decision Problem Vs Optimization Problem: 

 

Decision Problem and Algorithm : Any problem for which the answer is either zero or one is called a 

decision problem. An algorithm for a decision problem is termed a decision algorithm. 

 

A decision algorithm will output 0 or 1 Implicit in 

the signals success() and failure() 

Output from a decision algorithm is uniquely defined by input parameters and 

algorithm specification. 

 

 
Optimization Problem and Algorithm: Any problem that involves the identification of an optimal (either 

minimum or maximum) value of a given cost function is known as an optimization problem. An 

optimization algorithm is used to solve an optimization problem. 

An optimization problem may have many feasible solutions 

The problem is to find out the feasible solution with the best associated value 
 

NP-completeness applies directly not to optimization problems but to decision 

problems. 

 

 
Casting (Conversion) of Optimization Problem into Decision Problem: 

Optimization problems can be cast into decision problems by imposing a bound on output or solution. 

Decision problem is assumed to be easier (or no harder) to solve compared to the optimization problem. 

Decision problem can be solved in polynomial time if and only if the corresponding optimization problem 

can be solved in polynomial time. If the decision 
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problem cannot be solved in polynomial time, the optimization problem cannot be solved in polynomial 

time either. 

For example consider, shortest path problem. Optimization problem is to find a shortest path between 

two vertices in an undirected weighted graph, so that shortest path consists least number of edges. 

Whereas the decision problem is to determine that given an integer k, whether a path exists between 

two specified nodes consisting of at most k edges. 

 

 
Maximal Clique: 

 

Clique is a maximal complete sub-graph of a graph G = (V,E), that is a subset of vertices in V all 

connected to each other by edges in E (i.e., forming a complete graph). 

Example: 
 

 

 
The Size of a clique is the number of vertices in it. The Maximal clique problem is an optimization 

problem that has to determine the size of a largest clique in G. A decision problem is to determine 

whether G has a clique of size at least ‘k’. 

 

 
Input for Maximal clique problem: Input can be provided as a sequence of edges. Each edge in E(G) is a 

pair of vertices (i, j) .The size of input for each edge (i, j) in binary representation is 

 
 

And input size of any instance is given by 
 

 

 
Where ‘k’ is the number to indicate the clique size 
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Maximal clique problem as Decision Problem: 

 

Let us denote the deterministic decision algorithm for the clique decision problem as dclique(G, k). If |V | 

= n, then the size of a maximal clique can be found by 

for ( k = n; dclique ( G, k ) != 1; k-- ); 
 

If time complexity of dclique is f(n), size of maximal clique can be found in time g(n) <= n.f(n). 

Therefore, the decision problem can be solved in time g(n) 

 

 
Note that Maximal clique problem can be solved in polynomial time if and only if the clique 

decision problem can be solved in polynomial time. 

 

 
Non deterministic Clique Algorithm: 

Algorithm DCK(G, n, k) 

{ 

S=0; // Empty set. 

for i=1 to k do 

{ 
 

t = Choice(1,n); 

if t ε S then Failure(); 

S= SU{ t }; 

} 
 

for all pairs (i,j) such that i ε S, j ε S and i!=j do if (i, 

j) is not an edge of G then Failure(); 

Success(); 

} 
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Non-deterministic knapsack problem: 

It is a non-deterministic polynomial time complexity algorithm. 
 

The for loop selects or discards each of the n items It also re-computes the total weight and 

profit corresponding to the selection 

The if statement checks to see the feasibility of assignment and whether the profit is above 

a lower bound r 

The time complexity of the algorithm is O(n) . If the input length is q in binary, then O(q). 

 

algorithm nd_knapsack ( p, w, n, m, r, x ) 

{ 

 

 
for ( i = 1; i <= n; i++ ) 

{ 

x[i] = choice ( 0, 1 ); 

W += x[i] * w[i]; 

 

 
} 

if ( ( W > m ) || ( P < r ) ) 

failure(); 

else 

success(); 

} 

 SUM OF SUBSETS PROBLEM: 

Bits are numbered from 0 to m from right to left 
 

Bit i will be 0 if and only if no subsets of A[j], 1 _ j _ n sums to i 

Bit 0 is always 1 and bits are numbered 0, 1, 2, . . . ,m right to left 

Number of steps for this algorithm is O(n) 

Each step moves m + 1 bits of data and would take O(m) time on a conventional computer 

 

Assuming one unit of time for each basic operation for a fixed word size, the complexity of 

deterministic algorithm is O(nm) 
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Consider the deterministic decision algorithm to get sum of subsets 

algorithm sum_of_subsets ( A, n, m ) 

{ 

// A[n] is an array of integers s 

= 1 // s is an m+1 bit word 

// bit 0 is always 1 for 

i = 1 to n 

s |= ( s << A[i] ) // shift s left by A[i] bits if bit m 

in s is 1 

write ( "A subset sums to m" ); 

else 

write ( "No subset sums to m" ); 

} 

 

 
 COOK’S THEOREM: 

 

 
We know that, Class P problems are the set of all decision problems solvable by deterministic 

algorithms in polynomial time. Similarly Class NP problems are set of all decision problems solvable 

by nondeterministic algorithms in polynomial time. 

Since deterministic algorithms are a special case of nondeterministic algorithms, P NP 

 

Cook formulated the following question: Is there any single problem in NP such that if we 

showed it to be in P, then that would imply that P = NP? This led to Cook’s theorem as : 

 

Satisfiability is in P if and only if P = NP. 
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Cook’s Theorem Proof: 
 
 
 

Consider Z - denotes a deterministic polynomial algorithm A - 

denotes a non- deterministic polynomial algorithm 

I - denotes input instance of algorithm n - 

denotes length of input instance 

Q - denotes a formulae 
 

m - denotes length of formulae 
 

Now, the formula ‘Q’ is satisfiable if and only if the non-deterministic algorithm ‘A’ has a 

successful termination with input ‘I’. 

If the time complexity of ‘A’ is p(n) for some polynomial p(), then the time needed to 

construct the formula ‘Q’ by algorithm ‘A’ is given by O(p3(n)log n). 

Therefore complexity of non-deterministic algorithm ‘A’ is O(p3(n)log n). 

(NP) 
 

Similarly, the formula ‘Q’ is satisfiable if and only if the deterministic algorithm ‘Z’ has a 

successful termination with input ‘I’. 

If the time complexity of ‘Z’ is q(m) for some polynomial q(), then the time needed to construct 

the formula ‘Q’ by algorithm ‘Z’ is given by O(p3(n)log n + q(p3(n)log n)). 

Therefore complexity of deterministic algorithm ‘Z’ is O(p3(n)log n + q(p3(n)log n)). (P) 

 
If satisfiability is in P, then q(m) is a polynomial function and the complexity of ‘Z’ becomes O(r(n)) for 

some polynomial r(n). 

Hence, P is satisfiable, then for every non-deterministic algorithm ‘A’ in NP can obtain a 

deterministic algorithm ‘Z’ in P. 

So, the above construction shows that “if satisfiability is in P, then P=NP” 


